
Unified Solids
Marek Gayer, John Apostolakis, Gabriele Cosmo, Andrei

Gheata, Jean-Marie Guyader, Tatiana Nikitina
CERN PH/SFT

The 17th Geant4 Collaboration Meeting, Chartres, France,
September 10-14, 2012

Motivations for
a common solids library

• Optimize and guarantee better long-term maintenance

of Root and Gean4 solids libraries
o A rough estimation indicates that about 70-80% of code investment for the

geometry modeler concerns solids, to guarantee the required precision and

efficiency in a huge variety of combinations

• Create a single library of high quality implementations
o Starting from what exists today in Geant4 and Root

o Adopt a single type for each shape

o Create a new Multi-Union solid

o Make high quality, much faster Tessellated Solid

o Aims to replace solid libraries in Geant4 and Root

o Allowing to reach complete conformance to GDML solids schema

• Create extensive testing suite

Marek Gayer - Unified Solids 9/11/2012 2

Navigation functionality and
library services for each solid
• Performance critical methods:

o Location of point either inside, outside or on surface

o Shortest distance to surface for outside points

o Shortest distance to surface for inside points

o Distance to surface for inside points with given direction

o Distance to surface for outside points with given direction

o Normal vector for closest surface from given point

• Additional methods: Bounding Box, Capacity, Volume,

Generating points on surface/edge/inside of solid, creating

mesh / polyhedra for visualization

Marek Gayer - Unified Solids 9/11/2012 3

Topics presented next:
• Testing suite

• New Multi Union Solid

• Tessellated Solid made fast

Marek Gayer - Unified Solids 9/11/2012 5

Testing Suite
• Solid Batch Test

• Optical Escape

• Data analysis and performance (SBT DAP)

• Specialized tests (e.g. quick performance

scalability test for multi-union)

Marek Gayer - Unified Solids 9/11/2012 6

Optical Escape Test
• Optical photons are generated inside a solid

• Repeatedly bounce on the reflecting inner surface

• Particles must not escape the solid

Marek Gayer - Unified Solids 9/11/2012 7

Solids Batch Test (SBT)
• Points and vectors test

o Generating groups of inside, outside and surface points

o Testing all distance methods with numerous checks

• E.g. for each inside random point p,

SafetyFromInside(p) must be > 0

• Voxels (boxes) tests
o Randomly sized voxels with random inside points

• Scriptable application, creates logs

• Extendible C++ framework
o Allowing easy addition of new tests

Marek Gayer - Unified Solids 9/11/2012 8

Data Analysis and
Performance (DAP)

Marek Gayer - Unified Solids 9/11/2012 9

DAP features
• Extension of the SBT framework

• Centred around testing Unified Solids together with existing Geant4 and Root

solids

• Performance and values their differences from different codes can be

compared

• Tests with pre-calculated, randomly generated sets of points and vectors

• Constrain: aim to reach similar or better performance in each method

• The core part of Unified Solids testing

• Two phases

o Sampling phase (generation of data sets, implemented as C++ app.)

o Support for batch scripting

• Detailed configuration of conditions in the tests

• Invoking several tests sequentially
o Analysis phase (data post-processing, implemented as MATLAB scripts)

• Portable: Windows, Linux, Mac

Marek Gayer - Unified Solids 9/11/2012 10

DAP - Analysis phase
• Visualization of scalar and vector data sets and shapes

• Visual analysis of differences

• Graphs with comparison of performance and scalability

• Inspection of values and differences of data sets

Marek Gayer - Unified Solids 9/11/2012 12

Visualization of scalar and
vector data sets

Marek Gayer - Unified Solids 9/11/2012 13

3D plots allowing to
overview data sets

Marek Gayer - Unified Solids 9/11/2012 14

3D visualization of
investigated shapes

Marek Gayer - Unified Solids 9/11/2012 15

Support for regions of data,
focusing on sub-parts

Marek Gayer - Unified Solids 9/11/2012 16

Visual analysis of
differences

Marek Gayer - Unified Solids 9/11/2012 17

Visual analysis of
differences in 3D

Marek Gayer - Unified Solids 9/11/2012 18

Graphs with comparison of
performance

Marek Gayer - Unified Solids

9/11/2012 19

Visualization of scalability

performance for specific solids

Marek Gayer - Unified Solids

 Number of z sections ->

9/11/2012 20

Inspection of values and differences of

scalar and vector data sets

Marek Gayer - Unified Solids 9/11/2012 21

New Multi-Union solid

Marek Gayer - Unified Solids 9/11/2012 22

Boolean Union solids

Marek Gayer - Unified Solids

• Existing CSG Boolean solids (Root and

Geant4) represented as binary trees
o To solve navigation requests, most of the solids composing a

complex one have to be checked

o Scalability is typically linear => low performance for solids

composed of many parts

Boolean Union solid:
is composite of two solids, either primitive or Boolean

[The pictures were produced by users
of Wikipedia “Captain Sprite” and
“Zottie” and are available under
Creative Commons Attribution-Share
Alike 3.0 Unported license]

9/11/2012 23

Multi-Union solid
• We implemented a new

solid as a union of many

solids using voxelization

technique to optimize the

speed
o 3D space partition for fast

localization of components

o Aiming for a log(n) scalability

• Useful also for several

complex composites

made of many solids with

regular patterns

Marek Gayer - Unified Solids 9/11/2012 24

1. Create voxel space (2D
simplification)

Marek Gayer - Unified Solids

x

y

9/11/2012 25

2. Usage of bit masks for
storing voxels

Marek Gayer - Unified Solids 9/11/2012 26

Scaling of Multi-Union vs.
Boolean solid

Marek Gayer - Unified Solids 9/11/2012 27

Test union solids for
scalability measurements

Marek Gayer - Unified Solids 9/11/2012 28

Test union solids for
scalability measurements

Marek Gayer - Unified Solids 9/11/2012 29

Test union solids for
scalability measurements

Marek Gayer - Unified Solids 9/11/2012 30

The most performance
critical methods

Marek Gayer - Unified Solids 9/11/2012 31

Tessellated Solid made fast

Marek Gayer - Unified Solids 9/11/2012 32

Test case a mechanical part with

~1.100 faces – key-1.1k.gdml

Marek Gayer - Unified Solids 9/11/2012 33

Test case foil with ~2.500
faces – foil-2.5k.gdml

Marek Gayer - Unified Solids 9/11/2012 34

Test case foil ~164.000 faces for

LHC experiment – foil-164k.gdml

Marek Gayer - Unified Solids 9/11/2012 35

Tessellated Solid notes
• The algorithms and datastructures were voxelized

resulting in dramatical performance enhancement in the
all most performance critical methods

• Also, G4TesselatedSolid had several weak parts of
algorithm, used at initialization which had n2 complexity.

• This sometimes caused very huge delays (e.g. in case of
foil with 164k faces)

• We rewrote them to have n ∙ log n complexity

• Analysis for huge speedup of Normal, SafetyFromInside,
SafetyFromOutside methods done, implementing now

• Analysis for lowering of ~33%+ of original memory
requirements done, implementing now

• Very soon to be implemented for Geant4 9.6 as
G4TesselatedSolid (without bridge)

Marek Gayer - Unified Solids 9/11/2012 36

Performance – 1.1k/SCL 5
with 10k voxels

• Speedup: 15x 1638x+ 19.4x 9.04x

Marek Gayer - Unified Solids 9/11/2012 37

Performance – 2.5k/SCL5
with 10k voxels

• Speedup: 33x 1000x+ 22x 23x

Marek Gayer - Unified Solids 9/11/2012 38

Performance – 164k/SCL5
with 10k voxels

• Speedup: 240x 1000x+ 133x 397x

Marek Gayer - Unified Solids 9/11/2012 39

Memory overhead
requirements for voxelization

Marek Gayer - Unified Solids

Voxels / Case key-1.1k.gdml foil-2.5k.gdml foil-164k.gdml

1000 1.6% 1.6% 1.6%

10.000 4.5% 4% 3.9%

100.000 16.5% 12.2% 8.7%

1.000.000 101%| 593/1193kB 60% | 1.1/1.8MB 19.5% | 66/79MB

9/11/2012 40

In addition, G4TesselatedSolid memory

requirements will be lessened by ~33%
• Each of tessel (can be millions) contains class G4VFacet

• Each of these facets self-contain between others these fields:

• string geometryType: “G4TriangularFacet”

• int nVertices = 3

• double radiusSq // used only in constructor, as temp. variable

• std::vector used (2x), even in cases of triangle; but std::vector
can take e.g. 16+ bytes even when is empty

• G4TessellatedGeometryAlgorithms *tGeomAlg

• Data fields are planned to be moved to inherited classes (also
for the reason that quadrangular facet is currently
implemented as two triangular facets).

• G4VFacet will be without data fields, only methods,
becoming a real interface

• There are more things to improve there, we listed only some of
most obvious things needed to be replaced

9/11/2012 Marek Gayer - Unified Solids 41

Status of work
 Types and USolid interface are defined

 Bridge classes defined and implemented for both

Geant4 and Root

 Testing suite defined and deployed

 Implementation of Multi-Union as well as Tessellated

solid performance optimized and nearly completed

 Started implementation of primitives:

 First implementation of Box, Orb (simple full sphere) and Trd

(simple trapezoid)

 Currently implementing: Cone, Tube and their segment
version

Marek Gayer - Unified Solids 9/11/2012 43

Future work
• Give priority to the most critical solids and those

where room for improvement can be easily

identified

• Systematically analyze and implement remaining

solids in the new library

Marek Gayer - Unified Solids 9/11/2012 44

Thank you for your attention.

? ?
Questions ?

Marek Gayer - Unified Solids 9/11/2012 45

BakS - Visualizing mesh in
Matlab (sbtpolyhedra.m)

• function res = sbtpolyhedra(method)

• filenameVertices = [method 'Vertices.dat'];

• filenameTriangles = [method 'Triangles.dat'];

• filenameQuads = [method 'Quads.dat'];

• vertices = load(filenameVertices);

• quads = load(filenameQuads);

• triangles = load(filenameTriangles);

• hold on;

• h =

patch('vertices',vertices,'faces',quads,'facecolor','c','edgecolor','b')

; % draw faces in blue

• alpha(h,.1);

• h =

patch('vertices',vertices,'faces',triangles,'facecolor','c','edgecolor',

'b'); % draw faces in blue

• alpha(h,.1);

• view(3), grid on;% default view with grid

• end

Marek Gayer - Unified Solids 9/11/2012 46

BakS - Visualizing vectors of

points in Matlab with color bar
• Key matlab commands:

o colormap('default');

o scatter3 (points(:,1),

points(:,2), points(:,3),

pointsize, values, 'filled');

o colorbar;

Scatter3 here uses table of points –

each row consists of x, y, z than array

of pointsize. But pointsize can be as

well a numeric constant, which

would be used for all points

Marek Gayer - Unified Solids 9/11/2012 47

BakS - Visualizing vectors
with Matlab

Marek Gayer - Unified Solids

• quiver3(x,y,z,u,v,w,color)

;

• x,y,z : array of points

• U,v,w: array of vector

directions for

corresponding point

• Color – colours used for

vectors

9/11/2012 48

