
Thread-safety and shared
geometry data

J. Apostolakis

Overview

• Issues

– RW data in the ‘live’ geometry tree

– Causes

– Implications

• Improving Geometry for MT !?

– Reducing / eliminating RW data

– Impact on kernel and user code

– Expected and potential changes

Issues

• Live geometry tree has ‘read write’ members

– Physical Volumes – identify the copy number

• PVReplica: int CopyId

• PVParameterisedVolume: VSolid, Transformation, ..

– This means that today the RW fields must be
thread local in G4-MT

– Can we make G4Navigator + Geometry
‘independent’ and fully thread-safe ?

What is RW in geometry?

• In the LIVE geometry tree most Physical
Volumes types are RW (except Placement)

– Why? To address need to identify the copy
number, and to have the correct properties

• Specifically

– PVReplica: int CopyId

– PVParameterisedVolume: VSolid, Transformation,
Material, ..

Explanation

1 2 5 4 3

Logical B

Param
or

Replica
PV

Logical View – Replica or Parameterised Volume

Physical B Logical

Copy#

Mate-
rial

View in Memory – Geant4 objects

Who uses the RW information?

• Every client of the geometry

– G4VPhysicalVolume GetLogicalVolume()

– G4LogicalVolume GetSolid()

– G4LogicalVolume GetMaterial()

• G4Processes

– Any process that needs

• User code – in Sensitive Detector, Actions, …

Implications

• This means that today all the RW fields must be
thread local in G4-MT
– A mini-class is required to hold CopyId for Replica
– Each Replica instance gets an InstanceId, and

references a location in Local Array
• Extra indirection + needs to use thread Id (worker?)

• Parameterised volumes have special way
– A copy of each PV instance is created in master
– Threads create a copy of each instance
– Result: less memory savings; Unclear whether

RegularNavigation will work.

Impact

• Each solid must have a Clone() method
– A worker (thread) must create a clone of each solid of

the Parameterised Volume
• Can be thousands or millions

• This solution greatly reduces reuse of memory in
MT
– Clear impact on applications with large Param. Vol.

• Unclear whether NestedParameterisation and
Regular Navigation work or not

• Alternative solution could / should be sought

Tentative Plans

• Goal: Reduce or eliminate RW information in
‘live’ geometry tree
– Keep all information about current volume only in

G4TouchableHistory

• Can it be done without breaking interfaces?

• Challenge: What about existing uses of key
methods?
– in PhysicalVolume->GetLogicalVolume

– logicaVolume->Get(Solid,Material, ..)

Change: internal in Geometry

• Keep all information about current volume only in
G4TouchableHistory

• Requires changes in G4Navigator and its dependent classes

• Additional information to be kept in Touchable History
(tbc)

– If we need to maintain interface(s) of PV, LV,

• Change interface of Parameterised Volume and
Parameterisation ?

• Create a clone of logical volume (?)

Changes: users’ considerations

• If we do not keep compatibility all calls to
GetLogicalVolume->Get(Solid, …)

– Must migrate much kernel and user code

– Some of this code is already wrong (must use
TouchHist to get correct answer).

• How to solve uses of Physical/Logical Volume
Get methods ?

– Can ‘local’ clones of LogicalVolume solve this ?

Use in Tracking – after relocation

1 2 5 4 3

Logical B

Param
or

Replica
PV

Logical View – Replica or Parameterised Volume

Physical B Logical

Copy:5

Mate-
rial

View in Memory – Geant4 objects

Additional issues

• Must associate correct Thread-local Field to
the relevant LogicalVolume (or Region).

• The locations of these fields are:

– Global (all space) – belongs to World log-vol;

– Per Region – belong to region;

– Per Logical Volume – to LV.

• Must ensure correct assignments

– Note that LV has a FieldManager = field + ‘Solver’

