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Introduction 
• CMS has integrated Geant4 9.5p01 in the developemt branch 

and faces visible slow down of simulation 
• Urgent fixes are applied but CPU performance  of 9.4 is not yet 

achieved 
• This problem is general and is of concern for other LHC 

experiments and needs actions to improve the situation 
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CPU performance problem 
• Significant CPU penalty have been identified after simple unit 

tests after 9.5p01 integration to CMSSW: depending on type of 
events up to 15% 
• Was confirmed by performance analysis of the FNAL group 

• Analysis with igprof clearly identified a significant time spent in 
G4HadronicCrossSection class – GHEISHA cross section 
• The fix is in return back cash and to use G4Pow 
• The fix is in ref-07 

• The private patch for CMSSW was provided using improved 
Geant4 classes included in ref-07 
• This reduces CPU penalty by factor 2  
• Still cross section methods are inside top list in the igprof report 
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Ttbar in Full CMS with Geant4 9.5p01  
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% total       Self  Function Before fix 
   7.29     203.52  G4HadronCrossSections::CalcScatteringCrossSections(G4DynamicParticle const*, int, int) [38] 
   4.81     134.17  G4CrossSectionDataStore::GetCrossSection(G4DynamicParticle const*, G4Element const*, G4Material con) [31] 
   4.31     120.24  __ieee754_log [51] 
   2.91      81.39  G4Mag_UsualEqRhs::EvaluateRhsGivenB(double const*, double const*, double*) const [72] 
   2.13      59.59  G4Navigator::LocateGlobalPointAndSetup(CLHEP::Hep3Vector const&, CLHEP::Hep3Vector const*, bool, ) [46] 
   1.85      51.57  __ieee754_exp [96] 
   1.84      51.39  G4PolyconeSide::DistanceAway(CLHEP::Hep3Vector const&, bool, double&, double*) [85] 
   1.84      51.30  _init [93] 
   1.65      45.98  G4ClassicalRK4::DumbStepper(double const*, double const*, double, double*) [45] 
   1.49      41.70  G4PhotoNuclearCrossSection::GetIsoCrossSection(G4DynamicParticle const*, int, int, G4Isotope const*, .. [104] 
   1.47      40.97  __ieee754_atan2 [114] 
   1.35      37.75  G4PhysicsVector::Value(double) [91] 

% total       Self  Function After fix of GHEISHA x-section 
   5.46     348.91  G4CrossSectionDataStore::GetCrossSection(G4DynamicParticle const*, G4Element const*, G4Material *) [32] 
   4.08     260.85  __ieee754_log [51] 
   2.68     171.25  G4Mag_UsualEqRhs::EvaluateRhsGivenB(double const*, double const*, double*) const [73] 
   2.57     164.13  G4HadronCrossSections::CalcScatteringCrossSections(G4DynamicParticle const*, int, int) [68] 
   2.24     143.02  _init [80] 
   2.06     131.57  G4Navigator::LocateGlobalPointAndSetup(CLHEP::Hep3Vector const&, CLHEP::Hep3Vector const*, bool) [45] 
   1.84     117.50  __ieee754_exp [97] 
   1.71     109.57  G4PolyconeSide::DistanceAway(CLHEP::Hep3Vector const&, bool, double&, double*) [85] 
   1.60     102.28  __ieee754_atan2 [107] 
   1.58     100.92  G4ClassicalRK4::DumbStepper(double const*, double const*, double, double*) [44] 
   1.49      95.24  G4PhotoNuclearCrossSection::GetIsoCrossSection(G4DynamicParticle const*, int, int, G4Isotope const*,….) [105] 
   1.47      94.02  G4CrossSectionDataStore::GetIsoCrossSection(G4DynamicParticle const*, int, int, G4Isotope const*….) [36] 



Comments to IGPROF results 
for CMS 
• At each step of a particle elastic and inelastic x-sections are 

computed 
• For GHEISHA (and some other) x-sections computation of elastic 

and inelastic are performed by call to the same private method 
CalcScatteringCrossSections 

• Usage of cash reduces number of such calls at least in 2 times 
• Usage of G4Pow reduce CPU required by this method  

• After fix of GHEISHA x-section leading methods takes:  
• Geometry-navigation 14.6% 
• Hadronic cross sections take 12.8% 
• Math functions (EM, hadronics, geometry) 7.5% 
• EM physics takes 3.3% 
• Random generator 1.0 % 
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Recent FNAL Profiling Results 
• Soon Yung Jun and Krzysztof Genser provided monthly report 

for ref-07 
• About 5% CPU degradation in electron samples is observed 
• Preliminary analysis of simple profiler results shows that extra 

methods appear in ref-07 in list of top CPU usage: 
• G4CrossSectionDataStore::GetCrossSection 2% 
• Electro-nuclear x-section 1.4% 
• G4ParticleChange::CheckIt 1.5% 

• Further analysis is needed 
• The Sunday report for ref-08 shows that the problem of EM 

CPU degradation disappears, what is the reason? 
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CPU Performance Problems for 
Geant4 9.5 and 9.6 
• In CMS profiling cross sections take more time than in SimplifiedCalo 
• After fix of GHEISHA x-section G4HadronCrossSectionDataStore cashes 

were added in ref-07, results are problematic but in ref-08 are 
suddenly improved 

• Is ref-08 (current) situation final for 9.6 or we can do better?  
• What else can be done for cross sections? 

• These classes are concentrated in one library, so all fixes are compact 
• We need to understand which particle cross sections really take 

majority of CPU 
• Is it neutron and/or other cross sections? 
• Why gamma-nuclear and electro-nuclear take too much CPU? 
• Is it only hadronic problem or EM may compute cross sections faster  

alsoll? 
• One possible improvement is to use G4Pow whenever it is possible 

 
• This problem is essential for all LHC applications both for 9.5 and 9.6! 
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