
Performance of CMS
Geant4 Simulation

V.Ivanchenko

17th Geant4 Workshop
10-14 September 2012
Chartres, France

1

Introduction
• CMS has integrated Geant4 9.5p01 in the developemt branch

and faces visible slow down of simulation
• Urgent fixes are applied but CPU performance of 9.4 is not yet

achieved
• This problem is general and is of concern for other LHC

experiments and needs actions to improve the situation

2

CPU performance problem
• Significant CPU penalty have been identified after simple unit

tests after 9.5p01 integration to CMSSW: depending on type of
events up to 15%
• Was confirmed by performance analysis of the FNAL group

• Analysis with igprof clearly identified a significant time spent in
G4HadronicCrossSection class – GHEISHA cross section
• The fix is in return back cash and to use G4Pow
• The fix is in ref-07

• The private patch for CMSSW was provided using improved
Geant4 classes included in ref-07
• This reduces CPU penalty by factor 2
• Still cross section methods are inside top list in the igprof report

3

Ttbar in Full CMS with Geant4 9.5p01

4

% total Self Function Before fix
 7.29 203.52 G4HadronCrossSections::CalcScatteringCrossSections(G4DynamicParticle const*, int, int) [38]
 4.81 134.17 G4CrossSectionDataStore::GetCrossSection(G4DynamicParticle const*, G4Element const*, G4Material con) [31]
 4.31 120.24 __ieee754_log [51]
 2.91 81.39 G4Mag_UsualEqRhs::EvaluateRhsGivenB(double const*, double const*, double*) const [72]
 2.13 59.59 G4Navigator::LocateGlobalPointAndSetup(CLHEP::Hep3Vector const&, CLHEP::Hep3Vector const*, bool,) [46]
 1.85 51.57 __ieee754_exp [96]
 1.84 51.39 G4PolyconeSide::DistanceAway(CLHEP::Hep3Vector const&, bool, double&, double*) [85]
 1.84 51.30 _init [93]
 1.65 45.98 G4ClassicalRK4::DumbStepper(double const*, double const*, double, double*) [45]
 1.49 41.70 G4PhotoNuclearCrossSection::GetIsoCrossSection(G4DynamicParticle const*, int, int, G4Isotope const*, .. [104]
 1.47 40.97 __ieee754_atan2 [114]
 1.35 37.75 G4PhysicsVector::Value(double) [91]

% total Self Function After fix of GHEISHA x-section
 5.46 348.91 G4CrossSectionDataStore::GetCrossSection(G4DynamicParticle const*, G4Element const*, G4Material *) [32]
 4.08 260.85 __ieee754_log [51]
 2.68 171.25 G4Mag_UsualEqRhs::EvaluateRhsGivenB(double const*, double const*, double*) const [73]
 2.57 164.13 G4HadronCrossSections::CalcScatteringCrossSections(G4DynamicParticle const*, int, int) [68]
 2.24 143.02 _init [80]
 2.06 131.57 G4Navigator::LocateGlobalPointAndSetup(CLHEP::Hep3Vector const&, CLHEP::Hep3Vector const*, bool) [45]
 1.84 117.50 __ieee754_exp [97]
 1.71 109.57 G4PolyconeSide::DistanceAway(CLHEP::Hep3Vector const&, bool, double&, double*) [85]
 1.60 102.28 __ieee754_atan2 [107]
 1.58 100.92 G4ClassicalRK4::DumbStepper(double const*, double const*, double, double*) [44]
 1.49 95.24 G4PhotoNuclearCrossSection::GetIsoCrossSection(G4DynamicParticle const*, int, int, G4Isotope const*,….) [105]
 1.47 94.02 G4CrossSectionDataStore::GetIsoCrossSection(G4DynamicParticle const*, int, int, G4Isotope const*….) [36]

Comments to IGPROF results
for CMS
• At each step of a particle elastic and inelastic x-sections are

computed
• For GHEISHA (and some other) x-sections computation of elastic

and inelastic are performed by call to the same private method
CalcScatteringCrossSections

• Usage of cash reduces number of such calls at least in 2 times
• Usage of G4Pow reduce CPU required by this method

• After fix of GHEISHA x-section leading methods takes:
• Geometry-navigation 14.6%
• Hadronic cross sections take 12.8%
• Math functions (EM, hadronics, geometry) 7.5%
• EM physics takes 3.3%
• Random generator 1.0 %

5

Recent FNAL Profiling Results
• Soon Yung Jun and Krzysztof Genser provided monthly report

for ref-07
• About 5% CPU degradation in electron samples is observed
• Preliminary analysis of simple profiler results shows that extra

methods appear in ref-07 in list of top CPU usage:
• G4CrossSectionDataStore::GetCrossSection 2%
• Electro-nuclear x-section 1.4%
• G4ParticleChange::CheckIt 1.5%

• Further analysis is needed
• The Sunday report for ref-08 shows that the problem of EM

CPU degradation disappears, what is the reason?
6

CPU Performance Problems for
Geant4 9.5 and 9.6
• In CMS profiling cross sections take more time than in SimplifiedCalo
• After fix of GHEISHA x-section G4HadronCrossSectionDataStore cashes

were added in ref-07, results are problematic but in ref-08 are
suddenly improved

• Is ref-08 (current) situation final for 9.6 or we can do better?
• What else can be done for cross sections?

• These classes are concentrated in one library, so all fixes are compact
• We need to understand which particle cross sections really take

majority of CPU
• Is it neutron and/or other cross sections?
• Why gamma-nuclear and electro-nuclear take too much CPU?
• Is it only hadronic problem or EM may compute cross sections faster

alsoll?
• One possible improvement is to use G4Pow whenever it is possible

• This problem is essential for all LHC applications both for 9.5 and 9.6!

7

	Performance of CMS Geant4 Simulation
	Introduction
	CPU performance problem
	Ttbar in Full CMS with Geant4 9.5p01
	Comments to IGPROF results for CMS
	Recent FNAL Profiling Results
	CPU Performance Problems for Geant4 9.5 and 9.6

