DE LA RECHERCHE À L'INDUSTRIE

The MuElec extension for microdosimetry in silicon

Mélanie Raine

CEA, DAM, DIF France

www.cea.fr

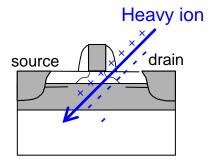
Geant4 Collaboration Meeting, Chartres - 10 SEPT. 2012

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation in Geant4


Conclusion and Perspectives

CONTEXT: Study of electronic components under irradiation

Passage of a single ion in a transistor's sensitive area:

- Energy loss by (direct) ionization
- Generation of electron-hole pairs
- Transport/collection in semiconductor
- SEE = Single-Event Effect

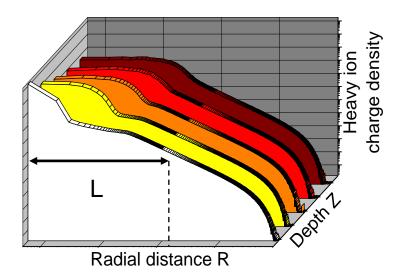
SEE = Functional anomaly or destructive effect in an electronic component, due to a single particle crossing the device.

Examples of SEE:

Non-destructive effects: Corruption of a single bit in a memory array (SEU).

Propagation of a transient parasitic signal (SET).

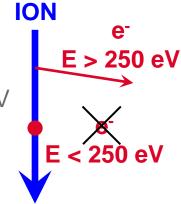
Destructive effects: Rupture of the gate oxide (SEGR).


Burnout of a power device (SEB).

Destructive or not: Single-Event Latch-up (SEL).

CONTEXT: Need to take into account radial dimension of the ion track

- Test for SEE sensitivity: measure of the SEE cross section vs. LET LET = Linear Energy Transfer LET = $-\frac{1}{\rho}\frac{dE}{dx}$ Assume same LET = same effect. Energy E $\rho \downarrow$ Energy E $\rho \downarrow$ Energy E $\rho \downarrow$
 - Vary with depth Z, penetration into matter \Rightarrow Energy deposition = f(Z).
- But also radial dimension R of ion track \Rightarrow Energy deposition = f(Z,R).
- Decreasing size of components L \Rightarrow L < 0.25 µm \Rightarrow L ~ R or L < R


dx

 \Rightarrow Heavy-ion induced SEE simulation in advanced devices requires the accurate description of radial ionization profiles.

CONTEXT AND MOTIVATION

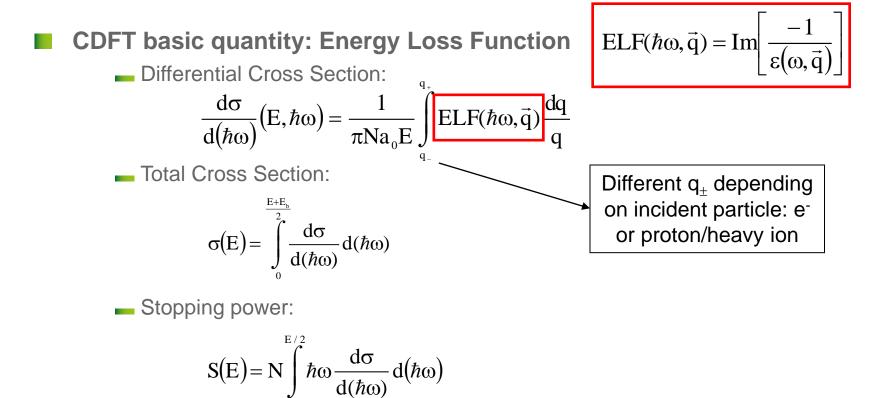
- Heavy-ion induced SEE simulation in advanced devices requires the accurate description of radial ionization profiles.
- Geant4 = adequate tool to simulate ion tracks
 - Succesfully used in combination with TCAD [1] or SEE prediction tool [2]
 - Down to the 32 nm node.
- Inherent limits in Geant4 ionization models (Livermore):
 - Recommended secondary production threshold at 250 eV
 - Limits the accuracy of ion track below 10 nm in radius
- ⇒ Need for more accurate Geant4 ionization models !
 - Since 2010, development of the "**MuElec**" (µ-electronics) extension in Geant4 for microdosimetry in silicon
- \Rightarrow Part of last Geant4 release (v9.6 beta, June 2012).

[1] Raine *et al.*, IEEE TNS, vol. 57, 2010.[2] Raine *et al.*, IEEE TNS, vol. 58, 2011.

> Brief description of the theory

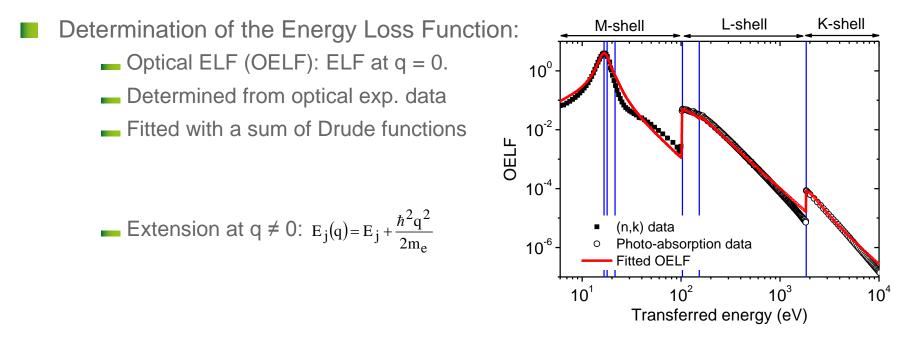
Implementation in Geant4: The MuElec extension

Some validation results


Proton track simulation in Geant4

Conclusion and Perspectives

BRIEF DESCRIPTION OF THE THEORY



- Calculation of ionizing cross-section for the generation of electrons by incident electrons, protons and heavy ions:
 - Based on the Complex Dielectric Function Theory (CDFT).
 - Using the procedure described by Akkerman et al. [1].

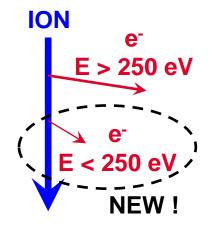
[1] Akkerman et al., NIM B, vol. 227, 2005.

BRIEF DESCRIPTION OF THE THEORY

6 cross-sections, allowing to distinguish 6 different ionizing interactions:

Plasmon excitation,

Ejection of an electron from the 5 Si electronic shells:


M1 (3s), M2 (3p), L1 (2s), L2 (2p) and K (1s) shells.

All calculation details in:

- A. Valentin, et al., "Geant4 physics processes for microdosimetry simulation: very low energy electromagnetic models for electrons in silicon", NIM B, vol. 288, pp. 66 - 73, 2012.
- A. Valentin, et al., "Geant4 physics processes for microdosimetry simulation: very low energy electromagnetic models for protons and heavy ions in silicon", NIM B, vol. 287, pp. 124 - 129, 2012.

- **No secondary production threshold** energy.
- **Discrete approach on the entire energy range**: explicit simulation of all interactions on a step-by-step basis.

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation in Geant4

Conclusion and Perspectives

IMPLEMENTATION IN GEANT4: THE MUELEC EXTENSION

IMPLEMENTATION IN GEANT4: THE MUELEC EXTENSION

Based on the existing Geant4-DNA framework, which uses the same initial theory (CDFT) in liquid water.

MuElec extension:

- In \$G4INSTALL/source/processes/electromagnetic/lowenergy
- 2 processes, one model each

Process	Model	Interaction	Particle	Energy range
G4MuElecInelastic	G4MuElecInelasticModel	Ionization	e⁻	16.7 eV - 50 keV
			Proton Heavy ion	50 keV/amu - 23 MeV/amu
G4MuElecElastic	G4MuElecElasticModel	Elastic scattering	e	16.7 eV - 50 keV

2 additional classes: G4MuElecCrossSectionDataSet

G4MuElecSiStructure

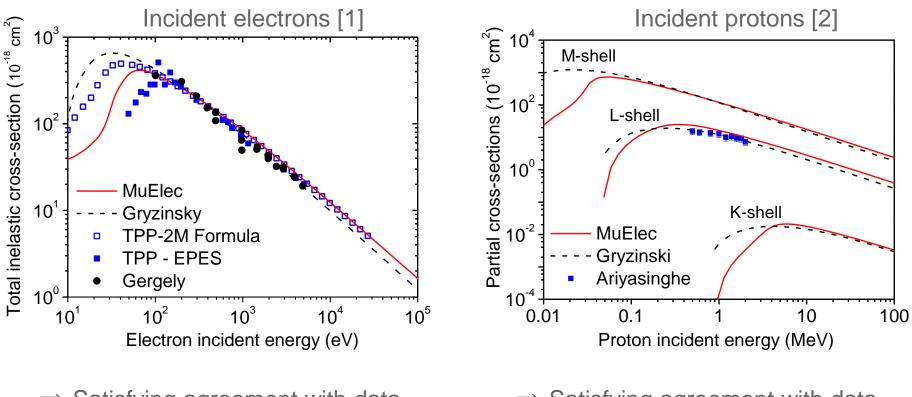
Tabulated total and differential cross sections in G4EMLOWX.Y

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation

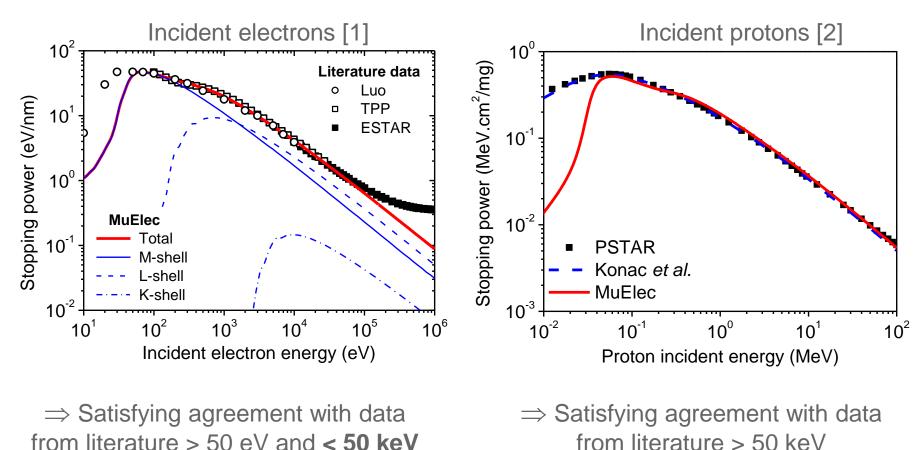

Conclusion and Perspectives

SOME VALIDATION RESULTS

DE LA RECHERCHE À L'INDUSTRI

SOME VALIDATION / VERIFICATION RESULTS

Inelastic cross-section

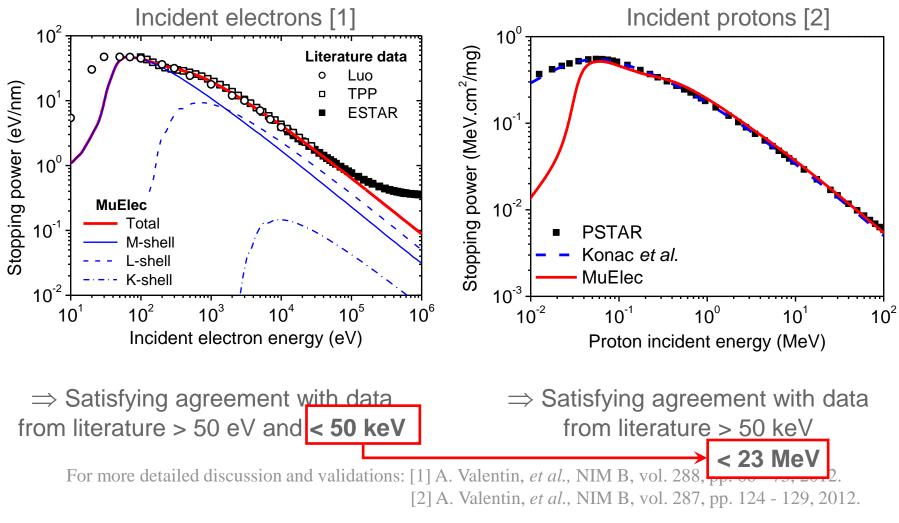

⇒ Satisfying agreement with data from literature > 50 eV ⇒ Satisfying agreement with data from literature > 50 keV

For more detailed discussion and validations: [1] A. Valentin, *et al.*, NIM B, vol. 288, pp. 66 - 73, 2012. [2] A. Valentin, *et al.*, NIM B, vol. 287, pp. 124 - 129, 2012.

Mélanie RAINE - Geant4 Collaboration Meeting | 10 SEPT. 2012 | 13

SOME VALIDATION / VERIFICATION RESULTS

Stopping power



For more detailed discussion and validations: [1] A. Valentin, *et al.*, NIM B, vol. 288, pp. 66 - 73, 2012. [2] A. Valentin, *et al.*, NIM B, vol. 287, pp. 124 - 129, 2012.

Mélanie RAINE - Geant4 Collaboration Meeting | 10 SEPT. 2012 | 14

SOME VALIDATION / VERIFICATION RESULTS

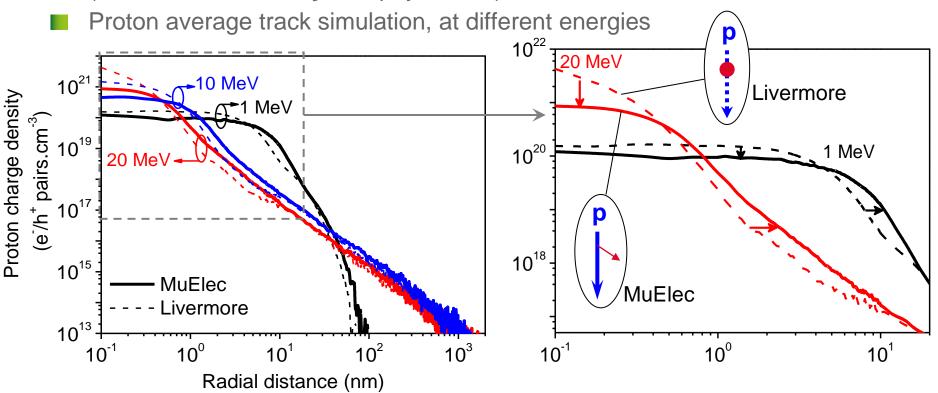
Stopping power

Mélanie RAINE - Geant4 Collaboration Meeting | 10 SEPT. 2012 | 15

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results


Proton track simulation in Geant4

Conclusion and Perspectives

PROTON TRACK SIMULATION IN GEANT4

PROTON TRACK SIMULATION IN GEANT4

Comparison between the MuElec extension and existing Geant4 models (G4EmLivermorePhysics physics list).

- As expected, main differences between models in the first 10 nm.
- \Rightarrow First application results presented at NSREC (July 2012).

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation in Geant4

Conclusion and Perspectives

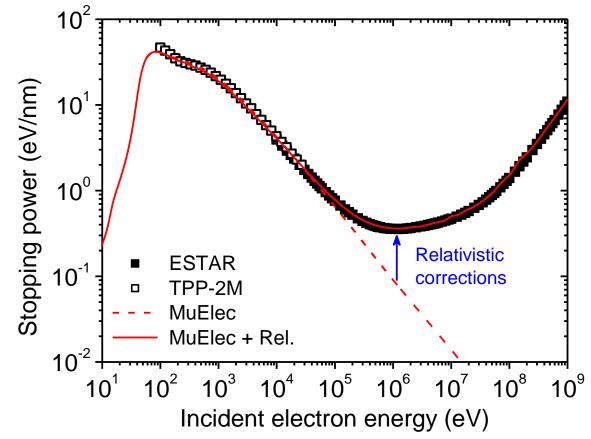
CONCLUSION AND PERSPECTIVES

CONCLUSION

- New Geant4 ionization models: "MuElec" extension.
- Explicit **generation of very low energy electrons**, down to 16.7 eV.
- Validated in comparison with data from literature:
 - 🗕 e⁻: 50 eV 50 keV
 - Proton/heavy ions: 50 keV/amu 23MeV/amu
- Two published articles describing theory, Geant4 implementation, validation/verification results
- One application article under review in IEEE TNS
- MuElec web page: Accessible from the web page of the LowE EM WG <u>https://twiki.cern.ch/twiki/bin/view/Geant4/LoweMuElec</u>

PERSPECTIVES

Corrections need to be applied to widen the energy range of application:


- Electron-electron exchange effects < 50 eV 😣 (not better)
- Relativistic corrections for higher energies (up to 1 GeV/amu)
- Properly taking into account plasmon excitation ???
- Extension to other microelectronics materials: SiO2 in progress
- To be checked: Combination of Standard EM or Low Energy EM processes with MuElec Physics processes
- Development of a dedicated physics constructor
- Development of a user example
- Adaptation to be used in Geant4-MT?

PERSPECTIVES

Corrections need to be applied to widen the energy range of application:

- Electron-electron exchange effects < 50 eV 😣 (not better)
- Relativistic corrections for higher energies (up to 1 GeV/amu)

PERSPECTIVES

Corrections need to be applied to widen the energy range of application:

- Electron-electron exchange effects < 50 eV 🙁 (not better)
- Relativistic corrections for higher energies (up to 1 GeV/amu)
- Properly taking into account plasmon excitation ???
- Extension to other microelectronics materials: SiO2 in progress
- To be checked: Combination of Standard EM or Low Energy EM processes with MuElec Physics processes
- Development of a dedicated physics constructor
- Development of a user example
- Adaptation to be used in Geant4-MT ?