
Summary of Session 6A
Re-thinking the Hadronic

Framework

Dennis Wright

14 September 2012

Why Change the Hadronic Framework?

• It may not be flexible enough

• does not easily accommodate all hadronic processes,
models and cross sections

• It may be too deep

• too many levels of inheritance which complicate and slow
down code

• It may give too much (or not enough) control to users

• should we consider more defaults (other than cross
sections)?

• Could be extended to include nuclear physics applications

2

Removing Inheritance Layers

• Removing inheritance layers MAY

• significantly reduce execution time

• improve multi-threaded, multi-CPU behavior

• Remove layers in hadronic process inheritance

• remove G4HadronInelasticProcess (doesn’t do much)

• remove G4ProtonInelasticProcess, …. (replace with template?)

• Remove layers in model inheritance

• remove, e.g., G4VPartonStringModel

• maybe others

3

G4HadronCaptureProcess G4HadronFissionProcess G4HadronInelasticProcess G4HadronElasticProcess

G4HadronicProcess

G4NeutronInelasticProcess G4ProtonInelasticProcess

Current Inheritance Scheme for
In-flight Hadronic Processes

4

G4PionPlusInelasticProcess

Removing Inheritance Layers: Conclusions

• Removing layers in hadronic process inheritance will be useful
and worth a try IF

• speed advantage can be demonstrated

• Not clear if removing layers in model inheritance is worthwhile

• more study required

5

Do We Need Capture and Fission
Processes?

• Some models now handle capture automatically

• -> make capture a part of in-flight process

• Fission is already part of several in-flight models

• G4LFission (GHEISHA) only active, stand-alone fission
model

• No conclusion whether to remove or not

6

At-rest Processes

• A consistent treatment of in-flight and stopping processes is
desired

• G4HadronicProcess (derived from G4VDiscreteProcess) is the
base class of most hadronic processes

• many stopping processes derived from G4VRestProcess instead

• In current system:
• stopping and in-flight processes can never be treated equally

• stopping processes cannot inherit useful methods from
G4HadronicProcess or use model approach of framework

• Conclusion:

• Make G4VRestDiscreteProcess base class of G4HadronicProcess

• move process sub-type enum to ctor of G4HadronicProcess

• use sub-type flag to decide whether in-flight or at-rest methods
should be used

7

At-rest Processes: Additional Proposal

• We could also derive G4HadronicProcess from G4VProcess

• removes an additional layer in hierarchy

• need to consult Processes Category developers

• in meantime, will proceed with derivation from
G4VRestDiscreteProcess

8

HP Neutrons

• HP and LEND models require material pointers and do their
own sampling of isotopes

• this adds a lot of complication to G4HadronicProcess and to
cross section classes

• such complication is not required for any other model

• specialized inheritance for HP and LEND

• possible inheritance diagram on slide 5

• G4MaterialDependentNeutronProcess

• would have G4Material pointer

• other processes would not have material pointer

• would do its own isotope selection

• No conclusion – more study required
 9

Cross Section Review and Clean-up

• Cross section classes still not handled clearly or consistently

• Re-design completed more than a year ago

• some planned migrations completed, not all

• end result not very satisfactory

• one reason: material dependence of HP neutron models

• Factory-based mechanism to assure a single instantiation of a
cross section which may be used by more than one different
entity

• General means for smooth blending of one cross section set
into another vs. energy

• Agreed to pursue clean-up, but depends on decision to split
out material dependence

• Smooth blending requires more study to achieve general
solution

10

Framework Rules

• Currently have default cross sections but not default models

• add default models?

• no conclusion

• G4HadFinalState

• currently must copy into particle change

• can we modify particle change or G4HadFinalState classes to
avoid this copying?

• more study required

• User hooks into hadronic models – good idea or bad idea?

• agreed to provide standard user interface to models

• administrative controls to decide which parameters to be
accessible

11

Nuclear Physics Extensions

• Want user-selected explicit final states (n,2n), (p,n,p+), etc.

• easy to do as biasing option on top of cascade models

• Want user access to nuclear target

• difficult for NeutronHP, continue to work on problem

• Provide “supermodel” to choose appropriate cascade model
for ion-ion collisions based on A of target and projectile

• some study required

• Provide J vectors for initial ground and excited nuclear states
in G4Nucleus, G4Fragment

• can do

12

Backup Slides

•

12

G4VIntraNuclearTransportModel
G4TheoFSGenerator

G4VPrecompoundModel

G4HadronicInteraction

G4INCLXXInterface

G4VHighEnergyGenerator

13

 Model Inheritance

G4QGSModel

G4PrecompoundModel

G4VPartonStringModel

G4BinaryCascade

G4CascadeInterface

G4FTFModel

G4GeneratorPrecompoundInterface

