
Had Stopping

Stopping Process Concerns

Most existing stopping processes outside of hadronic frame-

work

Inherit directly from G4VRestProcess

If hadronic models are used, get instantiated directly, not

necessarily with expected configuration

New G4HadronStoppingProcess subclass of

G4HadronicProcess provides full interface to framework

Only Bertini-based absorption model currently using

Michael H. Kelsey G4 CM, Parallel 6A 1



Had Stopping

G4VProcess Classification

Based on how tracked particle loses energy/interacts with

medium

Continuous

Particle transfers energy to medium all along trajectory

Discrete

Particle interacts with specific atom/nucleus in medium

Rest

Particle interacts at zero kinetic energy, possibly with

nearby atom/nucleus in medium

Pairwise subclasses (e.g., G4VRestDiscreteProcess) allow

for models with broader applicability

Michael H. Kelsey G4 CM, Parallel 6A 2



Had Stopping

Hadronic Process Categories

Only discrete interactions, classified by consequences to

target and projectile

Inelastic – In flight

Projectile interacts with target (usually nucleus), absorbed (killed),

multiple interaction secondaries

(Includes neutron-induced fission)

Elastic – In flight

Projectile interacts with target, redirected, target becomes

secondary (or target fragments)

Absorption – At rest

Projectile interacts with nucleus, killed, multiple interaction

secondaries.

Radioactive Decay – In flight or at rest

Projectile disappears (killed), decay products as secondaries

G4HadronicProcess inherits from G4VDiscreteProcess,

not consistent with absorption process

Michael H. Kelsey G4 CM, Parallel 6A 3



Had Stopping

Inheritance Options?

Ideally, different hadronic process types would directly match

G4VProcess subclasses

• In flight =⇒ G4VDiscreteProcess

• At rest =⇒ G4VRestProcess

• Radiactive decay =⇒ G4VRestDiscreteProcess

This either introduces three separate hadronic-process base

classes without a common interface class

or

requires multiple inheritance, with virtual inheritance to deal

with the consequent “diamond pattern”

Michael H. Kelsey G4 CM, Parallel 6A 4



Had Stopping

Configuration Flags

G4VProcess subclasses are identified at runtime via flags,

set by subclass constructors (base class sets all true)

G4bool enableAtRestDoIt : G4V∗Rest∗Process

G4bool enableAlongStepDoIt : G4V∗Continuous∗Process

G4bool enablePostStepDoIt : G4V∗Discrete∗Process

G4HadronStoppingProcess sets enableAtRestDoIt=true;,

overriding default from G4VDiscreteProcess

Defines non-trivial AtRestDoIt to handle interface to models

Michael H. Kelsey G4 CM, Parallel 6A 5



Had Stopping

Rationalize Interface?

G4HadronicProcess could inherit from

G4VRestDiscreteProcess

Define base AtRestDoIt as call-through to PostStepDoIt

G4HadronStoppingProcess sets enablePostStepDoIt=false

Keeps existing AtRestDoIt implementation

Unnecessary complication: Requires same kind of flag setting

as current situation, no particular benefit

Michael H. Kelsey G4 CM, Parallel 6A 6



Had Stopping

Other Concerns

G4RadioactiveDecay also standalone, inherits from

G4VRestDiscreteProcess

In directory hadronic/models, implemented as top-level

Process

G4HadronStoppingProcess base class in

hadronic/processes/stopping

Ought to be hadronic/processes/management

Legacy stopping processes should be removed, including all

usage in examples

Can this be done for 9.6? Or replace with non-functional

error messages and remove in GEANT4 X?

Michael H. Kelsey G4 CM, Parallel 6A 7


