GEant4 Parallelisation

J. Apostolakis]

I
* Kk Xk % &5 b 5

Session Overview

+ Part 1. Geant4 Multi-threading

% C++ 11 threads: opportunity for portability ?

% Open, revised and new requirements (from HEP experiments)
+ Part 2: Beyond MT

+ Geant4 on GPUs: prototypes

The ‘Geant’ prototype - moving towards Vector

Goals of Part 1

2 Geant4 MT and its future
+ Evaluate whether C++ 11 threads can replace pthreads (soon)
+ ldentify issues, roadblocks for ‘on-demand’ version of G4AMT

= Note Issues which arise from other new requirements.

Part 1. Geant4dMT & new requests

Geant4 MT - major topics

= New Requirements (2012)
Extending model of parallelism (TBB, dispatch) - CMS
Adapting to HEP experiment frameworks

% Folding of Geant4-MT into Geant4 release-X (end 2013)
Streamline for maintainabillity, ...

Need to assess and ensure the compatibility of these directions

« what is Geko@@MM4MT - Background

+ Goals, design, .. see background slides in Addendum (Purple

header)

Implementation is t

ne PhD-thesis work of Xin Dong (NorthEastern

Univ.) under the supervision of Prof. Gene Cooperman, in
collaboration with me (J.Ap.)

+ Updated to G4 9.4pl (X+D+M+G), & 9.5p1 by Daniel, Makoto and

Gabiriele.

Excellent speedup from 1-worker to 40+ workers - see CHEP 2012

poster

= But: Overhead vs Sequential found (first reported by Philippe

http://bit.ly/G4mtChep2012p
http://bit.ly/G4mtChep2012p

O

Geant4 MT Prototype - brief update

% MT updated to Geant4 9.5 patchO1 - 15 Aug (Daniel Brandt, Makoto,
Gabriele)

Improved Integration of parallel main();
% Corrected inclusion of tpmalloc.

% Improvements to ‘one-worker’ overhead - now decreased from 30%
to 18% (Xin)

% Due to the interaction of Thread Local Storage (TLS) and dynamic
libraries

©

Topics of Session

% C++ 11 Threads and Portability
Talk by Marc Paterno
= Request for support of ‘'on demand’ parallelism
Talk In plenary by Chris J., Liz S.-K. (CMS)
New trial usage in ATLAS ISF

% Discussion on these & related topics

C++ 11 threads:

+ Do C++11 ‘standard’ threads enable better portability (than pthreads)
7

2 What other benefits can C++11 threads offer ?

* Are they avallable today - or soon ?

O

CMS & on-demand event simulation

% Plenary presentation (Chris Jones, Eliz. Sexton-Kennedy)
% Request Integration into on-demand event simulation

workload Is handled by outside framework (CMSsw, TBB= Thread
Building Blocks)

2 unit of work: a full event.

What Is required to adapt Geant4-MT to ‘on-demand’ / dispatch
parallelism ?

% Key topic of Discussion session

ATLAS Input

= Developing trial use - in new Integrated Simulation Framework

Passes one track at a time, packaged as a G4 ‘event’ - for each
primary or one entering a sub-detector

= Sub-event level parallelization - using ‘event-level’ parallel Geant4-
MT

% This Is the first use of this capabillity / potential

The ‘one-worker’ slowdown

= Need more benchmarks and profiling. Current known causes:
Interaction of Thread Local Storage (TLS) and dynamic libraries?

extra calls to get_thread 1d() - in singleton TLS and our “TLS for
objects”

% Can we avoid the slowdown due to interaction of (TLS) and
dynamic libraries?

Proposal : try putting all of G4 into one shared library

% Or put the core - ‘nearly all’ - into one library, excluding only
auxiliaries: persistency, visualization.

Other Topics for Discussion

2 Your Issues here

Intro to Geant4-MT

J. Apostolakis

Outline of the Geant4-MT design

® . .
There Is one master thread that initialises and spawns workers; and

several worker threads that execute all the ‘work’ of the simulation.

The unit of work for a worker is a Geant4 event

O limited sub-event parallelism was foreseen by splitting a physical event
(collision or trigger) into several Geant4 events.

Choice: Iimit changes to a few classes

O other classes have a separate object for each worker

Goals of Geant4-MT

‘Iéey goals of G4-MT

allow full use of multi-core hardware (including hyper-threading)
reduce the memory footprint by sharing the large data structures
enable use of additional threads within limited memory

reduce cost of memory accesses.

® . .
Looking forward - a personal view:

.Medium term goals: make Geant4 thread-safe (Geant4 X - Dec 2013)
O for use in multi-threaded applications.

Longer term goal
O Increase the throughput of simulation by enabling the use of additional
resources: co-processors and/or additional hardware threads.

Limit extent of changes

® The choice was to concentrate revisions to a few classes
o to reduce the effort required to create, test and maintain it
® The few classes that are changed are ones that
o manage the event loop
o touch geometry objects with multiple physical instances (replicas etc.)
o must share cross-sections for EM processes,
o wWhich create or configure the above classes.
® All other classes are unchanged
o a separate object Is created by each worker.

Implementation

® Uses the POSIX threads library (pthreads)
o currently works only on Linux.
® Global data is separated by thread
o using the gcc construct __ thread - this includes singletons.
® The master thread initializes all data
o reads all parameters and starts the other threads;
® Instances of separate objects are cloned by each worker
o copying the contents of all these objects in the master thread (shallow copy or deep copy ?)

'Split’' classes

® Some classes are split:
o part of their data is shared, and
o partis thread local.
® Shared data
o Is typically invariant in the event loop
o but also 'joint' and updated: ion table, particle table.

* implementation - CUStOMIZed methodology

o each instance of split object has an integer id

o Instantiates an array of stub object for each thread

o an object uses the entry in the array - index= int id

o the (sub-)object data is initialised by the worker thread that uses it.

Part 2. Beyond threads/tasks

Overview

% Need for more events by LHC/HEP experiments, medical users, ..

Challenge in CPUs: instruction fetch is bottleneck due to ‘granular’
OO methods, large number of branches, code size large compared
to caches.

2 Each instruction, method does too little work

= How to get more out of each instruction - and utilize the emerging
architectures: GPUs, MIC, CPU with wider SIMD execution units?

Explore GPUs and Vectors

Opportunities

CPU evolution - wider Vector Units + instructions:
+ Widespread: CPUs with128-bit units = 2 doubles or 4 floats
= Emerging: 256-bit (AVX) = 4 doubles or 8 floats

= MIC

New public information: Wide Vectors, 4 threads per core, ~60
cores

* GPUs

