
Report on Vector Prototype

J.Apostolakis, R.Brun, F.Carminati,

A. Gheata

10 September 2012

Simple observation: HEP transport is
mostly local !

ATLAS volumes sorted by transport time. The same behavior
is observed for most HEP geometries.

50 per cent of
the time spent in
50/7100 volumes

• Locality not exploited by the
classical transportation approach
• Existing code very inefficient
(0.6-0.8 IPC)
• Cache misses due to
fragmented code

A playground for new ideas
• Simulation prototype in the attempt to explore parallelism and

efficiency issues
– Basic idea: simple physics, realistic geometry: can we implement a

parallel transport model on threads exploiting data locality and
vectorisation?

– Clean re-design of data structures and steering to easily exploit
parallel architectures and allow for sharing all the main data structures
among threads

– Can we make it fully non-blocking from generation to digitization and
I/O ?

• Events and primary tracks are independent
– Transport together a vector of tracks coming from many events
– Study how does scattering/gathering of vectors of tracks and hits

impact on the simulation data flow

• Start with toy physics to develop the appropriate data structures
and steering code
– Keep in mind that the application should be eventually tuned based on

realistic numbers

Volume-oriented transport
model

• We implemented a model where all particles traversing a given
geometry volume are transported together as a vector until the
volume gets empty
– Same volume -> local (vs. global) geometry navigation, same material

and same cross sections
– Load balancing: distribute all particles from a volume type into smaller

work units called baskets, give a basket to a transport thread at a time
– Steering methods working with vectors, allowing for future auto-

vectorisation

• Particles exiting a volume are distributed to baskets of the neighbor
volumes until exiting the setup or disappearing
– Like a champagne cascade, but lower glasses can also fill top ones…
– No direct communication between threads to avoid synchronization

issues

Event injection

Realistic geometry + event
generator

Inject event in the volume
containing the IP
More events better to cut event
tails and fill better the pipeline !

Transport model

Physics
processes

Geometry
transport

n

Event
factory

n

1 1

0 0

n
v

nv

Track baskets (tracks in a single volume type)

Inject events into a track
container taken by a

scheduler thread

Track containers (any volume)

The scheduler holds a
track “basket” for each

logical volume. Tracks go
to the right basket.

Baskets are filled up to a
threshold, then injected

in a work queue

Transport threads pick
baskets “first in first out”

Physics processes and
geometry transport
work with vectors

Tracks are transported to
boundaries, then
dumped in a track

collection per thread

Track collections are
pushed to a queue and
picked by the scheduler

Sc
h

ed
u

le
r

Preliminary benchmarks

HT mode

Excellent CPU usage

Benchmarking 10+1
threads on a 12 core
Xeon

Locks and waits: some overhead due to
transitions coming from exchanging
baskets via concurrent queues

Event re-injection will improve the
speed-up

Evolution of populations
Flush events

0-4 5-9 95-99 Transporting
initial buffer

of events

"Priority"
regime

Excellent
concurrency

allover

Vectors
"suffer" in
this regime

Prototype implementation

transport
pick-up

baskets
transportable baskets

recycled baskets

full track collections

recycled track collections

W
o

rk
e

r
th

re
ad

s

D
is

p
at

ch
 &

 g
ar

b
ag

e

co
lle

ct
 t

h
re

ad

Crossing tracks
(itrack, ivolume)

Push/replace

collection

Main scheduler

0

1

2

3

4

5

6

7

8

n

Inject priority baskets

recycle
basket

ivo
lu

m
e

loop tracks and push to baskets

0

1

2

3

4

5

6

7

8

n

Stepping(tid, &tracks)

D
ig

it
iz

e
 &

 I/
O

 t
h

re
ad

Priority baskets

Generate(Nevents)

Hits

Hits

Digitize(iev)

Disk

Inject/replace baskets

deque

deque

ge
n

e
ra

te

fl
u

sh

Buffered events & re-injection
Reusage of event slots
for re-injected events
keeps memory under

control

Depletion regime
with sparse tracks
just few % of the

job

Concurrency
still excellent

Vectors
preserved

much better

Next steps

• Include hits, digitization and I/O in the prototype
– Factories allowing contiguous pre-allocation and re-usage of user structures

• MyHit *hit = HitFactory(MyHit::Class())->NextHit();
• hit->SetP(particle->P());

• Introduce realistic EM physics
– Tuning model parameters, better estimate memory requirements

• Re-design transport models from a “plug-in” perspective
– E.g. ability to use fast simulation on per-track basis

• Look further to auto-vectorization options
– New compiler features, Intel Cilk array notation, ...
– Check impact of vector-friendly data restructuring

• Vector of objects -> object with vectors

• Push vectors lower level
– Geometry and physics models as main candidates

• GPU is a great challenge for simulation code
– Localize hot-spots with high CPU usage and low data transfer requirements
– Test performance on data flow machines

Outlook

• Existing simulation approaches perform badly on the
new computing infrastructures
– Projecting this in future looks much worse...
– The technology trends motivate serious R&D in the field

• We have started looking at the problem from different
angles
– Data locality and contiguity, fine-grain parallelism, data

flow, vectorization
– Preliminary results confirming that the direction is good

• We need to understand what can be gained and how,
what is the impact on the existing code, what are the
challenges and effort to migrate to a new system…

Thank you!

