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Simple observation: HEP transport is
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ATLAS volumes sorted by transport time. The same behavior
is observed for most HEP geometries.



A playground for new ideas

Simulation prototype in the attempt to explore parallelism and
efficiency issues
— Basic idea: simple physics, realistic geometry: can we implement a
parallel transport model on threads exploiting data locality and
vectorisation?

— Clean re-design of data structures and steering to easily exploit
parallel architectures and allow for sharing all the main data structures
among threads

— Can we make it fully non-blocking from generation to digitization and
/O ?
Events and primary tracks are independent
— Transport together a vector of tracks coming from many events

— Study how does scattering/gathering of vectors of tracks and hits
impact on the simulation data flow
Start with toy physics to develop the appropriate data structures
and steering code

— Keep in mind that the application should be eventually tuned based on
realistic numbers



Volume-oriented transport

We implemented a model where all particles traversing a given
geometry volume are transported together as a vector until the
volume gets empty

— Same volume -> local (vs. global) geometry navigation, same material
and same cross sections

— Load balancing: distribute all particles from a volume type into smaller
work units called baskets, give a basket to a transport thread at a time

— Steering methods working with vectors, allowing for future auto-
vectorisation

Particles exiting a volume are distributed to baskets of the neighbor
volumes until exiting the setup or disappearing
— Like a champagne cascade, but lower glasses can also fill top ones...

— No direct communication between threads to avoid synchronization
issues




Event injection

More events better to cut event
tails and fill better the pipeline !

Realistic geometry + event
generator



Track collections are Tra n S pO rt m O d e I

pushed to a queue and

picked by the scheduler Track baskets (tracks in a single volume type)
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Preliminary benchmarks

® Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific
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Prototype implementation
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Buffered events & re-injection

in the transport queue
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Next steps

Include hits, digitization and 1/O in the prototype
— Factories allowing contiguous pre-allocation and re-usage of user structures
* MyHit *hit = HitFactory(MyHit::Class())->NextHit();
* hit->SetP(particle->P());
Introduce realistic EM physics
- Tuning model parameters, better estimate memory requirements
Re-design transport models from a “plug-in” perspective
— E.g. ability to use fast simulation on per-track basis
Look further to auto-vectorization options
— New compiler features, Intel Cilk array notation, ...

— Check impact of vector-friendly data restructuring
* Vector of objects -> object with vectors

Push vectors lower level
— Geometry and physics models as main candidates
GPU is a great challenge for simulation code

— Localize hot-spots with high CPU usage and low data transfer requirements
— Test performance on data flow machines



Outlook

e Existing simulation approaches perform badly on the
new computing infrastructures
— Projecting this in future looks much worse...
— The technology trends motivate serious R&D in the field

* We have started looking at the problem from different
angles

— Data locality and contiguity, fine-grain parallelism, data
flow, vectorization

— Preliminary results confirming that the direction is good

 We need to understand what can be gained and how,
what is the impact on the existing code, what are the
challenges and effort to migrate to a new system...



Thank you!



