Report on Vector Prototype

J.Apostolakis, R.Brun, F.Carminati,
A. Gheata
10 September 2012

Simple observation: HEP transport is
mostly local |

T * Locality not exploited by the
) classical transportation approach
108 b | * Existing code very inefficient
o N | (0.6-08IPC)
| ENE tiMe spenting -1« Cache misses due to
..................................... 50/7100 volumes fragmented code

1D5 ...

EEﬁEEEEq{m mgg ﬁEr LB - el 1mmﬂ=nﬂmnwEEmEEr&-l&‘lq" :'::
FHHHHH BRI E IS

ATLAS volumes sorted by transport time. The same behavior
is observed for most HEP geometries.

A playground for new ideas

Simulation prototype in the attempt to explore parallelism and
efficiency issues
— Basic idea: simple physics, realistic geometry: can we implement a
parallel transport model on threads exploiting data locality and
vectorisation?

— Clean re-design of data structures and steering to easily exploit
parallel architectures and allow for sharing all the main data structures
among threads

— Can we make it fully non-blocking from generation to digitization and
/O ?
Events and primary tracks are independent
— Transport together a vector of tracks coming from many events

— Study how does scattering/gathering of vectors of tracks and hits
impact on the simulation data flow
Start with toy physics to develop the appropriate data structures
and steering code

— Keep in mind that the application should be eventually tuned based on
realistic numbers

Volume-oriented transport

We implemented a model where all particles traversing a given
geometry volume are transported together as a vector until the
volume gets empty

— Same volume -> local (vs. global) geometry navigation, same material
and same cross sections

— Load balancing: distribute all particles from a volume type into smaller
work units called baskets, give a basket to a transport thread at a time

— Steering methods working with vectors, allowing for future auto-
vectorisation

Particles exiting a volume are distributed to baskets of the neighbor
volumes until exiting the setup or disappearing
— Like a champagne cascade, but lower glasses can also fill top ones...

— No direct communication between threads to avoid synchronization
issues

Event injection

More events better to cut event
tails and fill better the pipeline !

Realistic geometry + event
generator

Track collections are Tra n S pO rt m O d e I

pushed to a queue and

picked by the scheduler Track baskets (tracks in a single volume type)

I EEEEEEEEE
@ L
@ 1 Physics
o processes
X
s |OE
o) e
QJ —
<
> 1O
nv
Geometry
transport
Track contalners (any volume) ~-
Event | =
factory

Preliminary benchmarks

® Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific
aber of threads were running simultaneously. Threads are considered running if they are either actually running on a

Real speed-up 12 core x 2 HT, 1 collector T e e ma,rkfﬂgqmi

‘e and net consuming CPU time.

. RealTime | **
c - threads on a 12 core
E 12 ;y| Entries 24 2
I T " |Mean 1524 4
=k - | Xeon
r RMS 5945 ;
B 0s :
g 10] T4] E) 8 16 70 24 78 32 36+
p— + deal Over
F | + |+ Simultanecusly Running Threads
‘;I H N 'U Usage Histogram
© 8 T ﬂfl [a) i histogram represents a breakdown of the Elapsed Time. It visualizes what percentage of the wall time the specific
) g IV s aber of CPUs were running simultaneously. CPU Usage may be higher than the thread concurrency if a thread is
[l = i+ cuting code on a CPU while it is logically waiting.
[: i9s H
o :
2 o T s
0] 6 E
0] L |
w L + 0s E
o 1 2 3 4 & & 7 8 § 10 1L 12 13 14 15 16 17 18 19 20 21 22 23 24

4 3 Simultaneously Utilized Logical CPUs

- E " v L
: i it Time by Urilzati
E o Wit Time by Urilizationw ey
E dle @ eoor [Jok [ideal [over
73 0%s| 1

41 stack(s) selected. Viewing © Lof 1
bject Trpe. Object Creatian Madule and Functian a(rrent stack is 100.0% of salsction
- 100.0% (53 588 of 59.5885)

SpnTime | Modue

[Unknown)

5| 0 Rumning
O waits

O Tansiens
51 ¥hread concu...

nthreads

Event re-injection will improve the
speed-up

6.
-
(0p

Evolution of populat

number of baskets in the transport queue

Transporting
initial buffer
of events

regime

1500
1000

S00

iteration#

number of active workers

"Priority" 0-4 59 95-99

3

Excellent
concurrency

allover

= MW s N @ W

iterations

number of tracks/basket

Vectors
"suffer" in
this regime

M " “ V " r H '|

iteration#

Prototype implementation

o
P [Generate(N_ nt.)
S
£ 3
o 2 transportable baskets pick-up o
- 2 deque baskets =
c
o & =
@ recycled baskets @
= =
h ~—
o s g
o .
Hits = Inject/replace baskets :
= recy =
g? basket
% O Inject priority baskets
m o g .
Digitize(iev) E‘ 2 | Stepping(tid, &tracks)
= = Hits
V2] jmh]
| = =
= 5
oy (V4]
7 = - =
- ﬁ recycled track collections = = =
Disk - Crossing track
full track collections Push/ replace -FOSSINE Tracks
collection (itrack, ivolume)

deque

Buffered events & re-injection

in the transport queue

- Reusage of event slots] .
. . Depletion regime
for re-injected events)
- keeps memory under with sparse tracks
1500 control just few % of the
10080 jOb

£
Berationd

number of active workers

Concurrency

still excellent

faration¥

numbar of tracks/baskat

Vectors
preserved
much better

Next steps

Include hits, digitization and 1/O in the prototype
— Factories allowing contiguous pre-allocation and re-usage of user structures
* MyHit *hit = HitFactory(MyHit::Class())->NextHit();
* hit->SetP(particle->P());
Introduce realistic EM physics
- Tuning model parameters, better estimate memory requirements
Re-design transport models from a “plug-in” perspective
— E.g. ability to use fast simulation on per-track basis
Look further to auto-vectorization options
— New compiler features, Intel Cilk array notation, ...

— Check impact of vector-friendly data restructuring
* Vector of objects -> object with vectors

Push vectors lower level
— Geometry and physics models as main candidates
GPU is a great challenge for simulation code

— Localize hot-spots with high CPU usage and low data transfer requirements
— Test performance on data flow machines

Outlook

e Existing simulation approaches perform badly on the
new computing infrastructures
— Projecting this in future looks much worse...
— The technology trends motivate serious R&D in the field

* We have started looking at the problem from different
angles

— Data locality and contiguity, fine-grain parallelism, data
flow, vectorization

— Preliminary results confirming that the direction is good

 We need to understand what can be gained and how,
what is the impact on the existing code, what are the
challenges and effort to migrate to a new system...

Thank you!

