
Geant4 on GPU prototype

Nicholas Henderson (Stanford Univ. / ICME)

Koichi Murakami (KEK / CRC)

Stanford ICME, SLAC, G4-Japan Collaboration

supported by NVIDIA

Sep/10/2012 17th Geant4 Collaboration meeting 1

Outline

• project goal

• CUDA basics

• algorithm and implementation

• prototype and performance

Sep/10/2012 17th Geant4 Collaboration meeting 2

Project Goal

Dose calculation for radiation therapy

– GPU-powered

• parallel processing with CUDA

• boost-up calculation speed

– voxel geometry

• including DICOM interface

• material : water with variable densities

– limited Geant4 EM physic processes

• electron/positron/gamma

• medical energy rage (< 10-100 MeV)

– scoring dose in each voxel

Sep/10/2012 17th Geant4 Collaboration meeting 3

DCMTK

gMocren

GPU processing

Dose

DICOMRT-Dose

CUDA basics I

• “SIMD” architecture : Single Instruction, Multiple Data

– CUDA is a data parallel language

– wants to run same instruction on multiple pieces of data

– Think parallel!

• Coalesced memory access

– NVIDIA GPUs read from memory in 128 byte blocks

– To maximize memory throughput, we want a single read

to satisfy as many threads as possible

– We use a “struct of arrays” data structure to maximize

opportunities for coalesced memory reads

Sep/10/2012 17th Geant4 Collaboration meeting 4

CUDA Basics II

• Memory hierarchy
– CUDA provides access to several

device memory types:
• global, shared, constant, texture

– We currently use global memory for all
thread and track data and constant
memory for parameters

– We will use shared memory, which is
on-chip, at a later phase in the project

• Race conditions
– arise when multiple CUDA threads

attempt to write to same location in
global memory

– we avoid race conditions (or using
atomic operations) by maintaining
independent track and dose stacks for
each thread

Sep/10/2012 17th Geant4 Collaboration meeting 5

Parallelization strategy

• Each GPU thread processes a single track until the
track exits the geometry
– GPU runs ≈ 32k CUDA threads under the current

configuration

• Each thread has two stacks :
– one for storing secondary particles

– one for recording the energy dose in a voxel

• After a number of steps :
– energy dose in the stack is moved to main dose array

– secondary stacks may be redistributed for performance

Sep/10/2012 17th Geant4 Collaboration meeting 6

G4CU Basics

• Each thread stores data for:
– thread state {running, stopped}

– PIL(-left) for the step

– the limiting physics process for the step

• Each thread processes a track, which stores data for:
– particle spices

– position

– direction

– energy

• Other data associated with each thread:
– random number generator state, primary generation state, track

stack, dose stack, physical process data

Sep/10/2012 17th Geant4 Collaboration meeting 7

Geometry

• Focused on voxel navigation
– taking advantage of GPU power

• Implementation currently handles a single box with uniform
discretizations for each dimension
– planning for a hierarchical voxel model to allow higher resolution in

certain regions

• The material of each voxel is water with different density
– cross section, energy loss, etc are proportional to density

– not necessary to preparing thousands of tables

Sep/10/2012 17th Geant4 Collaboration meeting 8

Physics processes

• particles : electron, positron, gamma

• energy range : < 10-100 MeV

• material: water (and air) with variable densities

• processes:
electron / positron

• energy loss (ionization, bremsstrahlung)

• multiple scattering (different models will be tried)

• positron annihilation

gamma
• Compton scattering

• photo electric effect

• gamma conversion

• physics tables
– cross section, dE/dx, range, etc are retrieved from Geant4

– prepared for "standard" water

Sep/10/2012 17th Geant4 Collaboration meeting 9

Major algorithm phases

1. initialization
– allocate memory, initialize RNG (Random Number Generator)

2. main loop
– always take a step

– sometimes check termination conditions

– sometimes generate primary particles

– sometimes pop a secondary particle from track stack

– sometimes balance track stacks

– sometimes distribute dose stacks to main dose array

3. clean up
– output dose

– free all memory

Sep/10/2012 17th Geant4 Collaboration meeting 10

Algorithm pieces

• termination check:
– algorithm stops if all tracks are stopped, all stacks are empty,

and all primary budgets are exhausted

• primary generation:
– The generation procedure generates primaries and pushes

them onto stack until stack size reaches a fill_level

– If the stack size for a given thread is equal to or larger than
fill_level, then nothing is done

• stack pop:
– if possible pop a track from the stack and compute initial PILs

for all processes

Sep/10/2012 17th Geant4 Collaboration meeting 11

A single step

1. select process with the shortest PIL

2. apply all continuous processes
– processes have access to the stack

3. decrease PILs of all processes by step path length

4. apply discrete method of the limiting process
– process has access to the stack

– resample PIL for the limiting process

– update transportation PIL if particle properties have changed

Sep/10/2012 17th Geant4 Collaboration meeting 12

Dose accumulation

Notes:
– should avoid race condition due to memory access

– each thread has a dose stack to record deposit energy
accumulation

– a thread will push "the sum of energy deposition in a voxel" to
stack when a track to a different voxel

– periodically, dose stacks will fill up and need to be distributed
to the main dose array

Dose distribution procedure:
1. sort all dose stacks together by voxel index

2. reduce (sum-up) by voxel index

3. store the result in main dose array
• no race conditions because voxel indices are now unique

Sep/10/2012 17th Geant4 Collaboration meeting 13

Example configuration

GPU:
Tesla C2070 (Fermi)

448 cores, 1.15 GHz, 6GB GDDR5 (ECC)

SDK:
CUDA 4.2 (5-RC) : CURAND, Thrust, SCons (CMake)

Application
– generate 200k primaries

– 128 blocks, with 256 threads each
• total 32,768 CUDA threads

– run takes about 1.2 GB on device (mostly voxel arrays)

– generate and pop every 25 steps

– check termination conditions every 1,000 steps

Sep/10/2012 17th Geant4 Collaboration meeting 14

Current fake “physics” processes

• Compute PIL with:

-logf(curand_uniform(&data.rng.state[id]));

• Chdir: perturbs the direction of the particle

• Gensec: generates a secondary particle with less

energy

Sep/10/2012 17th Geant4 Collaboration meeting 15

NVIDA Visual Profile (nvvp)

Output from nvvp zoomed to a single iteration

Sep/10/2012 17th Geant4 Collaboration meeting 16

Run profile

• Run profile with current fake physics processes

and no stack balancing

Sep/10/2012 17th Geant4 Collaboration meeting 17

stack balance:
performance should be improved.

Summary

• Collaborative activity on Geant4-GPU between
– Stanford ICME, SLAC, and G4-Japan (KEK), supported by NVIDIA

• Focused on medical application
– dose calculation in voxel domain

– Geant4 EM physics processes

• GPU prototype
– parallel tracking on GPU thread

– multiple data structure for parallel processing

– efficient stack management

• Working on
– porting physics processes from Geant4

– optimization

Sep/10/2012 17th Geant4 Collaboration meeting 18

