nu_e:ss" W_E?»_ssu _moz

rlfllll“;rl. N o ki

. —[PI.JII
- i i b

N TS SU N —

Mae S o et o e e

Y T eI P R p—
[

P T e =g

B b S et i e
§ i, oo s e b 1

e B

. i
~

.......

Sy SE RO pERRS——

-
"
i
|

|Wvya || 41 1SOH ;E

Geant4 on GPU prototype

Nicholas Henderson (Stanford Univ. / ICME)

Koichi Murakami (KEK / CRC)

supported by NVIDIA
17th Geant4 Collaboration meeting

Stanford ICME, SLAC, G4-Japan Collaboration

Sep/10/2012

project goal

CUDA basics

algorithm and implementation
* prototype and performance

Sep/10/2012 17th Geant4 Collaboration meeting 2

Project Goal

Dose calculation for radiation therapy

— GPU-powered

« parallel processing with CUDA
* boost-up calculation speed

— voxel geometry

* including DICOM interface
 material : water with variable densities

— limited Geant4 EM physic processes

» electron/positron/gamma
 medical energy rage (< 10-100 MeV)

— scoring dose in each voxel

Sep/10/2012

17th Geant4 Collaboration meeting

o
g
=
S

GPU processing |

U

Dose

DICOMRT-Dose,L N

gMocren

CUDA basics |

e “SIMD” architecture : Single Instruction, Multiple Data
— CUDA is a data parallel language
— wants to run same instruction on multiple pieces of data
— Think parallel!

« Coalesced memory access
— NVIDIA GPUs read from memory in 128 byte blocks

— To maximize memory throughput, we want a single read
to satisfy as many threads as possible

— We use a “struct of arrays” data structure to maximize
opportunities for coalesced memory reads

Sep/10/2012 17th Geant4 Collaboration meeting 4

CUDA Basics I

« Memory hierarchy

— CUDA provides access to several
device memory types: Block (0,0) | Block (1,0)

 global, shared, constant, texture
— We currently use global memory for all ﬂ ﬂ
thread and track data and constant ’ ! ’ ’

memory for parameters

. . . | Thread (0, 0) Thread (1,0) | Thread (0, 0) Thread (1, 0)
— We will use shared memory, which is
on-chip, at a later phase in the project

GPU Grid

« Race conditions

— arise when multiple CUDA threads
attempt to write to same location in
global memory

— we avoid race conditions (or using
atomic operations) by maintaining
iIndependent track and dose stacks for
each thread

Sep/10/2012 17th Geant4 Collaboration meeting 5

Parallelization strategy

« Each GPU thread processes a single track until the
track exits the geometry

— GPU runs = 32k CUDA threads under the current
configuration

« Each thread has two stacks :
— one for storing secondary particles
— one for recording the energy dose in a voxel

« After a number of steps:
— energy dose in the stack is moved to main dose array
— secondary stacks may be redistributed for performance

Sep/10/2012 17th Geant4 Collaboration meeting 6

G4CU Basics

« Each thread stores data for:
— thread state {running, stopped}
— PIL(-left) for the step
— the limiting physics process for the step

« Each thread processes a track, which stores data for:
— particle spices
— position
— direction
— energy

e Other data associated with each thread:

— random number generator state, primary generation state, track
stack, dose stack, physical process data

Sep/10/2012 17th Geant4 Collaboration meeting 7

Geometry

* Focused on voxel navigation
— taking advantage of GPU power

* Implementation currently handles a single box with uniform
discretizations for each dimension

— planning for a hierarchical voxel model to allow higher resolution in
certain regions

« The material of each voxel is water with different density

— Cross section, energy loss, etc are proportional to density
— not necessary to preparing thousands of tables

Sep/10/2012 17th Geant4 Collaboration meeting 8

Physics processes

« particles : electron, positron, gamma
e energy range : < 10-100 MeV
« material: water (and air) with variable densities

* pProcesses.

electron / positron
* energy loss (ionization, bremsstrahlung)
« multiple scattering (different models will be tried)
 positron annihilation

gamma
« Compton scattering
« photo electric effect
¢ gamma conversion

* physics tables
— cross section, dE/dx, range, etc are retrieved from Geant4
— prepared for "standard" water

Sep/10/2012 17th Geant4 Collaboration meeting 9

Major algorithm phases

1. initialization
— allocate memory, initialize RNG (Random Number Generator)

2. main loop
— always take a step
— sometimes check termination conditions
— sometimes generate primary particles
— sometimes pop a secondary particle from track stack
— sometimes balance track stacks
— sometimes distribute dose stacks to main dose array

3. clean up
— output dose
— free all memory

Sep/10/2012 17th Geant4 Collaboration meeting 10

Algorithm pieces

 termination check:

— algorithm stops if all tracks are stopped, all stacks are empty,
and all primary budgets are exhausted

* primary generation:

— The generation procedure generates primaries and pushes
them onto stack until stack size reaches a fill_level

— If the stack size for a given thread is equal to or larger than
fill_level, then nothing is done

« stack pop:
— If possible pop a track from the stack and compute initial PILs
for all processes

Sep/10/2012 17th Geant4 Collaboration meeting 11

A single step

1. select process with the shortest PIL

2. apply all continuous processes
— processes have access to the stack

3. decrease PILs of all processes by step path length

4. apply discrete method of the limiting process
— process has access to the stack
— resample PIL for the limiting process
— update transportation PIL if particle properties have changed

Sep/10/2012 17th Geant4 Collaboration meeting 12

Dose accumulation

Notes:
— should avoid race condition due to memory access

— each thread has a dose stack to record deposit energy
accumulation

— athread will push "the sum of energy deposition in a voxel" to
stack when a track to a different voxel

— periodically, dose stacks will fill up and need to be distributed
to the main dose array

Dose distribution procedure:
1. sort all dose stacks together by voxel index
2. reduce (sum-up) by voxel index

3. store the result in main dose array
* no race conditions because voxel indices are now unigque

Sep/10/2012 17th Geant4 Collaboration meeting 13

Example configuration

GPU.:
Tesla C2070 (Fermi)
448 cores, 1.15 GHz, 6GB GDDRS5 (ECC)

SDK:
CUDA 4.2 (5-RC) : CURAND, Thrust, SCons (CMake)

Application
— generate 200k primaries

— 128 blocks, with 256 threads each
e total 32,768 CUDA threads

— run takes about 1.2 GB on device (mostly voxel arrays)
— generate and pop every 25 steps
— check termination conditions every 1,000 steps

Sep/10/2012 17th Geant4 Collaboration meeting 14

Current fake ‘physics” processes

« Compute PIL with:
-logf(curand_uniform(&data.rng.state[id]));

* Chdir: perturbs the direction of the particle

« (Gensec: generates a secondary particle with less
energy

Sep/10/2012 17th Geant4 Collaboration meeting 15

NVIDA Visual Profile (nvvp)

Output from nvvp zoomed to a single iteration

= Compute I EEEEEIE N TR
AC1

T 29.9% [20615] GACUTransport_after_step_k(G4CUTr... | GACUTrans... |
T 15.1% [20615] G4CU_recompute_transport_pil(G4cC... [
T 8.7% [20615] GACUChdir_after_step_k(GacUchdirar... e

F 7.8% [20615] G4CUGensec_after_step k(G4CUGens... -

T 6.5% [20615] G4CUTransport_along_step k(G4CUTra.., [

T 4.4% [20615] G4CU_decrease pillG4CUProc, G4CUD... B

T 3.5% [20616] G4CU_select_process{G4CUProc, G4cC.., .

T 1.1% [20615] G4CUChdir_along_step_k(G4CUChdirA... |

T 1.1% [20615] G4CUGensec_along_step k{G4CUGen.., I

T 0.5% [825] G4CUTransport_init_pil_k(G4CUTransport... e

T 0.5% [825] G4CU_pop_k(G4CUThreadArray, G4CUTra... e

T 0.3% [825] GACUPrimary_manage_k(G4cUPrimaryAr... [

T 0.2% [825] GACUChdir init_pil kiG4cUChdirArray, G... B

T 0.2% [825] G4CUGensec_init_pil kiG4CUGensecArra.., .

T 0.2% [825] G4CUTransport_init_k(G4CUTransportArra.., .

F 0.1% [1] G4CURng_curand_init_k(int, curandStateXo. ..

T 0.1% [825] G4CU _thread_init_to run(G4CUThreadArr... I

“F 0.1% [1] void pstack_init_k=G4CUTrack=(pstack<G4..,

T 0.1% [1] GACUPrimaryArray_init_k(G4CUPrimaryArray)

T 0.0% [825] GACUChdir_init_k{G4CcUcChdirArray, G4CU... |

—_—— - _—— P e

Sep/10/2012 17th Geant4 Collaboration meeting 16

Run profile

* Run profile with current fake physics processes
and no stack balancing

current g4cu run profile

300000 T
- active threads
= remaining primaries
= sum of stack sizes
250000}

200000

150000

100000

50000 \

N T

0 10000 20000 30000 40000 50000 60000
iteration

Sep/lO/ZOlZ Lrulrocalitd vuliavulauuvll riiccuily 17

stack balance:
performance should be improved.

Collaborative activity on Geant4-GPU between
— Stanford ICME, SLAC, and G4-Japan (KEK), supported by NVIDIA

Focused on medical application
— dose calculation in voxel domain
— Geant4 EM physics processes

GPU prototype
— parallel tracking on GPU thread
— multiple data structure for parallel processing
— efficient stack management

Working on
— porting physics processes from Geant4
— optimization

Sep/10/2012 17th Geant4 Collaboration meeting 18

