Geant4 Development
Pocket Guide Draft

Ben Morgan Friday 7t September, 2012
Contents
1 Introduction 2
2 Working with SVN 3
Writing Good Commit Messages 3
FurtherReading 4
3 Working with CMake 5
Getting HelponCMake 5
Supported Platforms and Versions 5
Geant4's CMake System 6
4 Developing and Maintaining Geant4 Toolkit Modules 7
Layoutof SourceCode 7
The sources.cmakeFile 7
Using External APIS 12
5 Developing Example Applications 13
Enabling Optional UI and Vis Drivers 15
Making Example Applications Installable 15
6 Working with Integration Tests 16
7 Working with Unit Tests 16

CONTENTS | 1

PART 1
Introduction

This guide aims to briefly document the use of SVN and CMake
for development of the Geant4 toolkit itself. It currently acts as a
short expansion on topics covered at the Geant4 2012 Workshop at
Chartres. Within this context, it is not a complete or official docu-
ment, though there is an intention for this, and other material pre-
sented at the Workshop, to form the basis of a future manual. This
will be heavily guided by feedback from developers

Due to the draft nature of this document, areas for comment and
possible expansion are marked up as follows

Expected major interface or behaviour changes be-
tween Geant4 9.6 and 2013 release of version 'X'. Doc-
umentation is written from the perspective of the 9.6
interface and behaviour.

These marked up notes should not be regarded as complete by any
means! There are no doubt many areas for expansion and improve-
ment.

The main document has been marked up using XgK&IEX as the au-
thor had a suitable template to hand to aid authoring. However,
there is nothing to stop the content being migrated to DocBook or
other markups. A "pocket guide" format is adopted to provide a
clean, compact and easy to browse document. It should be read-
able as a printed document, online and even on mobile devices. It
is hoped that this would be carried through to any future document
whatever the markup language used!

2 | Introduction

http://docbook.org

PART 2
Working with SVN

Writing Good Commit Messages

The SVN commit log is the primary method for recording what you
have changed, and also why the changes have been made. Geant4
also uses History text files to record changes and tags, usually one
per module.

Commit logs are slightly more powerful than History files as
they are unambiguously associated with particular changesets. One
might argue that the changeset diff is enough, yet we have all expe-
rienced cases where we go back through our own code and won-
der why we made a particular change. Good commit messages are
therefore critical for recording the what and the why of a change
not only for your collaborators but also for you!

What, then, is a good commit message? As you can imagine, there
are many schools of thought here, though perhaps the clearest and
easiest to grasp is the following pattern (adapted from a blogpost by
Tim Pope):

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72
characters so that log formatting is nice even when indented.

The blank line separating the summary from the body is critical
(unless the body is omitted); the summary might be used as an email
subject or as a shortlog in certain repository viewers.

Write your commit message in the present tense: "Fix bug" rather than
"Fixed bug". If you think about it, the message goes with the change,
not after it! This isn't hard and fast as long as you're consistent.
The body can contain multiple paragraphs, separated by blank lines.

- Bullet points are okay, too

— Typically a hyphen or asterisk is used for the bullet, preceded by a
single space, with blank lines in between, but conventions vary here

- Use a hanging indent

This is not to say you should make every commit message into a
novel as the context will matter. For example, if you have simply

Working with SVN | 3

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

added some Doxygen markup to one class, a perfectly good commit
message would be:

Add Doxygen markup to G4Foo class and methods

In contrast if you are committing a changeset that fixes Bug 42, then
a bad commit message would be

Fix Bug 42

which conveys little useful information. A better message would be

Fix Bug 42(G4DeepThought returns wrong answer)

Problem arises in AnswerToUltimateQuestion() method when the
G4Question instance cannot be initialized.

Implement new G4ProduceUltimateQuestion() function using the Earth
algorithm to calculate and return an appropriately initialized
G4Question instance. This method may throw a VogonException if

it cannot complete.

Whilst the preceeding considerations mean some judgement is
needed in how much to write, one hard and fast rule is that you
should never, ever, make a commit without a message ' . This
effectively defeats the aim of having a version control system in
the first place! Moreover, your collaborators will not thank you
when you introduce a bug and they have zero information on what
change may have introduced the bug or whether the change can be
reverted!

Further Reading

The links below contain further discussions and information on us-
ing Subversion and general practices with version control systems.

* Version Control With Subversion
* "A Note About Git Commit Messages" by Tim Pope

* "On commit messages" by Peter Hutterer

1 One rule that teams sometimes use to enforce this is that the author of an empty
message has to buy all the other team members a beer!

4 | Further Reading

http://svnbook.red-bean.com
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://who-t.blogspot.co.uk/2009/12/on-commit-messages.html

PART 3
Working with CMake

Getting Help on CMake

Documentation for CMake is now reasonably comprehensive, at
least for the core functions, variables and modules. The first port
of call is therefore Kitware's CMake website, and especially the

¢ Main CMake Documentation Page.
* CMake Documentation Wiki.

* CMake FAQs.

It's also possible to get help via the cmake command line application.
For example

$ cmake ——help-command project
to output help on the project command to stdout. Use
$ cmake ——help-commands | less

to view documentation on all commands in the less pager (or pipe
to your favourite text viewer).

A further useful resource is the CMake Mailing List, from which
many useful tips and tricks can be found if you use a list viewer with
integrated search. The author recommends The Mail Archive which
provides a nice search interface and view by date/thread options.

Supported Platforms and Versions

As of version 9.6, Geant4's buildsystem should support CMake 2.6.4
and higher on Linux, Mac OS X (Lion and Mountain Lion) and Win-
dows 7.

Working with CMake | 5

http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.mail-archive.com/cmake@cmake.org/info.html

Be aware that CMake's API can change even between minor ver-
sions. If you are adding CMake level functionality, check the Back-
ward Compatibility Matrix on the CMake Wiki.

Geant4's CMake System

Geant4 builds functions and macros on top on the core CMake com-
mands to provide a coherent and (we hope) easy to use "API" for
integrating your code, data and associated tests plus example appli-
cations into the Geant4 toolkit.

Don't hesitate to contact the Software Management WG for fur-
ther help, advice or comments/criticisms. Our doors (physical or
virtual!) are always open, and it's always better to ask than sit
around in confusion.

Please also use Geant4's Bugzilla to report problems, and there is
no need to contact us before doing so. It better to report something
that turns out not to be a bug than to let something slip through, and
in both cases having the record in the system is useful for future
reference.

6 | Geant4's CMake System

http://www.cmake.org/Wiki/CMake_Version_Compatibility_Matrix
http://www.cmake.org/Wiki/CMake_Version_Compatibility_Matrix
http://www.cmake.org/Wiki/CMake
https://geant4.cern.ch/collaboration/working_groups.shtml#wg.SoftMan
http://bugzilla-geant4.kek.jp

PART 4

Developing and Maintaining Geant4 Toolkit Modules

Layout of Source Code

A "module" is the basic development unit in Geant4 and provides
a coherent group of C++ code to provide a specific service in the
toolkit. When integrated into the toolkit, the module may be built
as as a single library, or it may be merged into a higher level library
as a component.

Geant4 enforces a standard layout for each module in the source
tree:

+— G4mymodule/
+- sources.cmake
+— (CMakelLists.txt
+- include/
| +- G4Foo.hh
| +- G4Bar.hh
+- src/
+— G4Foo0.cc
+— G4Bar.hh

The sources.cmake File

This file is used to define the following aspects of your module:
* Include paths to API headers used.
* Sources and Headers of the module itself.

» Libraries to link to the module.

It is the responsibility of the module maintainer(s) to keep this file
up to date with these values. We'll walk through an example of this
for the G4mymodule module described earlier. We'll assume this
uses two internal Geant4 modules, global and materials, and also
uses an external API "UsedAPI".

Developing and Maintaining Geant4 Toolkit Modules | 7

The description that follows is for Geant4 9.6, it is ex-
pected that a new API will be available in version X.
This will be discussed in Chartres.

Listing 1: sources.cmake file for G4mymodule

— Header paths for external APIs
include_directories(${CLHEP_INCLUDE_DIRS})
include_directories(${USEDAPI_INCLUDE_DIRS})

— Header paths for internal APIs

include_directories(
${PROJECT_SOURCE_DIR}/source/global/management/include
)

include_directories(
${PROJECT_SOURCE_DIR}/source/materials/include
)

- Define the module
geant4_define_module(NAME G4mymodule
HEADERS
G4Foo0.hh
G4Bar. hh
SOURCES
G4Foo.cc
G4Bar.cc
GRANULAR_DEPENDENCIES
G4globman
G4materials
GLOBAL_DEPENDENCIES
G4global
G4materials
LINK_LIBRARIES
${USEDAPI_LIBRARIES}
)

The file should begin by adding any include paths to headers used
by your module with the include_directories command. One
thing to note here is that you need to also add transient include
paths. An example of this is the inclusion of the CLHEP headers in
the above example. Even the G4Foo and G4Bar sources do not in-
clude CLHEP headers explicitly, they may include headers that do.

8 | The sources.cmake File

For example, they might include headers from G4globman that in-
clude CLHEP headers.

For deeply dependent modules, it's recognized that this can lead to
a heavy cascade of include paths. The best strategy for determining
include paths for you module is to start by only adding include paths
for the headers your code actually uses. If you encounter compile
errors with missing headers, add the required paths and rebuild.
Iterate until your module builds without such errors.

Use the geant_define_module to declare your module. The
NAME parameter sets the name the resultant library will have if
it is built in granular mode. The HEADERS parameter should list
all the files under the include directory that should be installed
by your module. Similarly, the SOURCES parameter should list all
the files under the src directory that should be compiled for your
module. If your module has headers and or sources that depend
on some aspect of the build (e.g. platform), you can create CMake
lists containing the required sources and headers prior to calling
geant4_define_module, for example

set (HDRS G4Foo0.hh)
set(SRCS G4Foo.cc
if(WIN32)
1ist (APPEND HDRS G4Foo_win32.hh)
1ist(APPEND SRCS G4Foo_win32.cc)
endif()

geant4_define_module(NAME G4foo
HEADERS
${HDRS}
SOURCES
${SRCS}

)
The GLOBAL_DEPENDENCIES parameter should list the names of all
the Geant4 libraries your module needs linking to when building
in global mode. The GRANULAR_DEPENDENCIES parameter should
list the names of all the Geant4 libraries your module needs linking

to when building in granular mode. Take care that the names of
some granular libraries may be the same as the global library of

The sources.cmake File | 9

which they are part (G4materials in the above example). Finally, the
LINK_LIBRARIES parameter should list all of the external libraries
your module links to.

When you add or remove dependencies to your module, you
should edit the sources.cmake file and add include paths and li-
brarylinks as needed. When you add or remove headers and source
files, you should edit the HEADERS and SOURCES parameters to up-
date the contents of your module. In both cases, the buildsystem
generated by CMake is aware that your module has changed (the
sources.cmake file becomes a dependency of your module), so the
changes will be automatically picked up the next time you run a
build.

Compared with the old GNUmake buildsystem, this puts more re-
sponsibility of you as a module maintainer as you must explicitly de-
clare the sources of your module and keep this list up to date. This
does mean inconsistent builds can creep in, and you can directly
check the build consistency by building the validate_sources tar-
get. When built, this will report (to terminal or IDE browser) any
mismatches between what is listed in the build and what is on disk.

CMake can locate source files using a globbing pattern via the
file command, but this is strongly discouraged by the CMake de-
velopers. The reason for this is described in their documentation
for the file command (author emphasis):

10 | The sources.cmake File

GLOB will generate a list of all files that match the glob-
bing expressions and store it into the variable. Globbing
expressions are similar to regular expressions, but much
simpler. If RELATIVE flag is specified for an expression,
the results will be returned as a relative path to the given
path. We do not recommend using GLOB to collect a list
of source files from your source tree. If no CMakeLists.txt
file changes when a source is added or removed then the
generated build system cannot know when to ask CMake
to regenerate.)

What this means is that if a glob is used to create a list of source files,
you have to rerun CMake manually whenever a file is added or re-
moved from disk. For a purely personal project this might be o.k. In
a large collaborative development environment under version con-
trol, it can quickly become frustrating as you have to flip between
your buildtool and CMake to rerun the latter after every possible
change, and this can quickly lead to inconsistent builds. Moreover,
globbing doesn't work so well for certain use cases such as generat-
ed/platform dependent/optional source files. Having a mix of glob-
bing and explicit listing is worse than either.

Explicit listing is therefore used mainly because it is supported
and recommended by CMake. It is also used because it provides a
single point of contact and interface for declaring how your mod-
ule is built (even with globbing, you would still have to edit the file
if include paths or linking change). This interface, namely, "edit
sources.cmake; rebuild" is identical across all buildsystems, and
only requires interaction with the buildsystem and version control
after CMake is run. A further advantage is that it's transparent to
changes in modules you don't maintain. If changes are pulled in
after an update, you only need rebuild as the buildsystem will rec-
ognize that changes to a module have occurred and will reconfigure
itself accordingly.

The sources.cmake File | 11

Using External APIs

Think carefully before using any third party APIs in Geant4. Is the
functionality already provided internally by the toolkit itself? Is the
API available and easy to install on all supported platforms, if not,
how difficult is it to port? Are there other APIs that would provide
the same functionality and which are more portable/available/sup-
ported? Is the license of the API compatible with the Geant4 license?

If after all of that, you still require the API for your code, you must
contact the Software Management WG as soon as possible. This con-
tactis needed to review the requirement for the API as well as assess
the ease of integration into Geant4/CMake (e.g. locating the API on
the installation system).

Assuming that the API is simply a header and library, then the
general interface in CMake is to provide variables

find_package(Frobnicate) # Software Management

Put headers in path
include_directories(${FROBNICATE_INCLUDE_DIRS})

Build binary

add_library(uses_frob uses_frob.cc)

Link libraries

target_link_libraries(uses_frob ${FROBNICATE_LIBRARIES})

12 | Using External APIs

PART 5
Developing Example Applications

Geant4 example applications generally use the following layout of
source code and build scripts and macros:

+- AppName
+- (CMakelLists.txt # Main build script
+- AppName.cc # Application main program
+— AppName.mac # Macro for runtime usage

+- include/
| +— AppNameDetectorConstruction.hh # Implementation

|+ ...

+- src/
+— AppNameDetectorConstruction.cc # Implementation
+— ..

This arrangement is required for backward compatibility with the
GNUmake system.

The minimal CMakelLists.txt for an example application is
shown in the following listing, where the comments should be re-
ferred to for explanations of the commands used and their pur-
pose. A slight "trick" that should be noted is the use of the config-
ure_file command to copy the macro from the source directory
to the build directory. This is required if the application codes the
execution of the macro into the main program using a relative path
and you expect the application to be run from the build directory.
Even if your application doesn't execute macros in code, it's helpful
to copy all macros to the build directory so the built application can
be run directly.

Developing Example Applications | 13

Listing 2: Minimal CMakelLists.txt for a Geant4 Application

— Ensure (CMake is >= 2.6
cmake_minimum_required(VERSION 2.6 FATAL_ERROR)

— Define the project, usually same
Name 1is usually the same the as final application
project(AppName)

- Find Geant4
REQUIRED argument makes CMake fail if it isn't found
find_package(Geant4 REQUIRED)

— Include Geant4 "use file"

This automatically sets required compiler flags
compile definitions and header paths
include(${Geant4_USE_FILE})

— Add headers of this project to the include path
include_directories(${PROJECT_SOURCE_DIR}/include)

— Explicitely list implementation sources
The headers are also listed so IDEs will include them
set (APPNAME_SRCS
include/AppNameDetectorConstruction.hh
other headers here
src/AppNameDetectorConstruction.cc
other sources here

)

— Create the actual executable from the main program
source file and implementation sources
add_executable(AppName AppName.cc ${APPNAME_SRCS})

— Link the executable to the Geant4 libraries
target_link_libraries(AppName ${Geant4_LIBRARIES)

— Copy the macro to the build directory
Ensures macro is accessible to app in build dir
configure_file(AppName.mac
${PROJECT_BINARY_DIR}/AppName.mac
COPYONLY
)

14 | Developing Example Applications

Enabling Optional UI and Vis Drivers

As it stands, the minimal CMakelLists.txt, will build a working
Geant4 application, but it will not include a user interface on any
visualization. UI and Visualization can be activated by supply-
ing extra "component” arguments to the find_package command.
Rather than just doing this directly, we add a user-selectable op-
tion and only add these components if the user requests it. This
allows the user can build either a batch mode or batch/interactive
executable.

Listing 3: Adding UI/Vis Selection

- Find Geant4
REQUIRED argument makes CMake fail if it isn't found
option(APPNAME_USE_UIVIS "Enable Geant4 UI/Vis_interfaces" ON)
if (APPNAME_USE_UIVIS)

find_package(Geant4 REQUIRED ui_all vis_all)
else()

find_package(Geant4 REQUIRED)
endif()

When building the application, all available UI and Vis drivers in
the build of Geant4 found will be activated by default, as the APP-
NAME_USE_UIVIS option is on by default. This can be changed when
running CMake to configure the project.

How to activate only the required drivers? Can a simple
interface be designed?

All component options need to be documented fully.
It's possible some component names may change.
Making Example Applications Installable
There is no requirement to make your example installable.
Should there be?

However, it is easy to add this functionality. Simply use CMake's
install command:

Enabling Optional UI and Vis Drivers | 15

Listing 4: Installing the AppName Application

add_executable(AppName AppName.cc ${APPNAME_SRCS})
target_link_libraries(AppName ${Geant4_LIBRARIES)

install(TARGETS AppName DESTINATION bin)
Anew installtarget will be added to the buildsystem (so make in-
stall works with Makefiles!). The DESTINATION argument sets the

directory where the application will be installed. If a relative path
is given, it will be interpreted relative to CMAKE_INSTALL_PREFIX.

This does not work if the application uses macros di-
rectly, without extra work.

PART 6
Working with Integration Tests

PART 7
Working with Unit Tests

16 | Working with Integration Tests

	Introduction
	Working with SVN
	Writing Good Commit Messages
	Further Reading

	Working with CMake
	Getting Help on CMake
	Supported Platforms and Versions
	Geant4's CMake System

	Developing and Maintaining Geant4 Toolkit Modules
	Layout of Source Code
	The sources.cmake File
	Using External APIs

	Developing Example Applications
	Enabling Optional UI and Vis Drivers
	Making Example Applications Installable

	Working with Integration Tests
	Working with Unit Tests

