Modularization of Geant4

Dynamic loading of modules
Configurable build using CMake

Pere Mato
Witek Pokorski
13.09.2012

Motivation

Geant4 has successfully brought together many experts from
different physics domains (HEP, space, medical, etc) as well as
related fields (geometry, visualisation, etc) to contribute to the toolkit

number of models and complexity of the software has grown to the
extend of being difficult to handle as one monolithic bloc
o compile-time dependencies introduce bindings of the code needed in
different (unrelated) domains
o very little configuration possible at the build time
only to switch off modules depending on external software
o at run time, many not-needed modules (physics models, etc) are loaded
into memory
users (LHCb requested it already) and developers would gain a lot if
Geant4 became a framework with dynamically loadable plugins

Examples

physics lists (builders) introduce a compile and link time
dependencies between all physics models in Geant4

o no way to choose to compile only EmDNA physics, or only HEP physics
o developers blocking each-other due to dependencies in SVN tags
libraries (for ex. G4processes) loaded at run time always include all
models

o waste of time and memory (e.g. the 3 top models counts for 30% of
G4processes and not used in standard HEP Physics Lists)

o LHC experiments could gain ~1-2% in memory requirements

1-2 % of the overall memory requirements of 1-2 GB gives ~20MB*100k concurrent jobs
=2 TB of RAM = 20k $

never all the Geant4 functionality is needed at once

G4visualisation not used in batch jobs, etc
o Gdanalysis not used in experiments frameworks, etc

Proposal

remove all possible compile-time dependencies by
using factory-based mechanism

Introduce configuration capability in Geant4 CMake
system to allow detailed selection of the required
modules
o should also be accompanied by an SVN tool allowing selective
check out of the code
Introduce a plugin-based, dynamic (on demand) loading
capability in Geant4
o only ‘core’ Geant4 should be linked with the application
o all specific modules (models, tools) should be loaded dynamically

Ad 1.

Factory based mechanism allows to instantiate

objects without including the concrete header file

In the client code

o concrete classes register themselves in some central
registry

o avoids compile- and link-time dependency

already done for cross section classes extracted

from CHIPS

o can be applied at any level in Geant4 (tools, modules,
physics lists, models, processes, etc...)

Ad 2.

with compilation dependencies removed
(point 1) CMake provides an easy way of
configuring (selecting) modules to be built

o already used for GDML, for instance

default CMake configuration can build
everything but specific flags could switch off
not needed modules

a small script for checking out from SVN only
the needed directories would help a lot

Ad 3.

dynamically loadable plugins will allow users to ‘build’
their applications at run time, using the needed minimum
of modules, with no need to recompile to add anything
extra

Geant4 ‘main’ would allow loading of the needed
functionality at runtime

o possibility to choses physics models
or to change the models without the need to recompile

o load necessary tools (visualisation, analysis, etc)

the same ‘main’ would be used in all cases
(development, validation, batch jobs) with just different
option (configuration) files

Example

building of Physics List

names of loadable
plugins

G4PhysicsPluginManager->AddPhysics(“EmStandardPhysics”)
G4PhysicsPluginManager->AddPhysics(“*HadronPhysicsQGSP_BERT")
etc...

Conclusion

modularization (removing compile-time
dependencies) and introducing dynamically
loadable plugins would improve a lot the
flexibility of the Geant4 toolkit

o would allow the users to select the needed minimum
of the modules and to change them dynamically

o would speed up the development

Geant4 major release is certainly a good
moment to introduce such a framework

Backup Slides

G4processes contribution (%)

[uonelooSSIp™ WY /S|PPOW/IIUCIpRY
" ABraua™ ybIy~ oayy/s|epow/aluoipey
" uononpolid—adojosi/s|apow/alucipey
" uolseliqe/s|apow/aluoipey

" Juswabeurw/sjapow/oluoipey

" Aeoap

" Buloos

" uolpey uoidsjojoyd/sjapouu/oluoipey
" uoneuodsuen

" uonesualsweled

" reondo

" Buiselq

" pwb/sjapowyoiuoipey

" suonwyonaubewonds|e

" Juswaleuew/oluoipey

" sIno

' uolssly|I/S|apow;/diuoipey

" sa|nosjow/eup/onaubewonds|e

" ndjonaubewonos|e

" sassadold/eupjonaubewondsle

' 1n/s|apowy/oluoipey

" s|injeuponaubewodsle

' |an/o1uoipey

" ABrauayBbiysonaubewonoss|s

" wnugiinbaaid/sjspowyaiuoipey

" Aeoap” aAnoeolpel/S|apow/dluoipey
" uswabeuew

" juiolpe/onaubewonds|e

" sAeix/onaubewonos|e

" apeosed” Areuig/sjopowaiuoipey
" uonesuejod/onaubewonds|e

" onse|@ Isenb/sjapow/oiuoipey

" onsel@ jualayoa/s|epow/oiuoipey
" sassaooud/oiuoipey

" Buiddois/oiuoipey

" uswabeuew/eup/onaubewodsle
" ABJ1aua” moj/sjapow/oluoipey

" Buns™ uoyed/sjapowyaiucipey

" s|jepouw/eup/onaubewol}ds)e

" Bdi/sjapowyoiuoipey

" s|nnjonaubewondsle

" XX|joul/s|opow/aiuoipey

" ABiaua ybiy/siapow/oluoipey

" prepuels/onaubewonds|s

" pus|/s|apowyoiuoipey

" ABrauamolonaubewonss|e

| suonoas ssougjoluoIpey

" uoneNoxa ap/s|apouw/oaiucipey

" apeoseo/sjapol/oluoipey

" Xurew” .~ wi/s|apowy/oluoipey

" dyuonnau/siapou/oluoipey

" goeds aseyd AUl [elIyd/s|apow/aiucipey

14

12 +

10 + —

8 + — —

o

11

