Can the development from Dubna be applied for an effective high energy high current charge breeder ?

> Evgeny E. Donets Laboratory of High Energy Physics, Joint Institute for Nuclear Research, Dubna, Russia edonets@jinr.ru

#### for the JINR ESIS group

HIE-EBIS Workshop CERN, October 16-17, 2012



 $B = 3.3 \text{ T} \quad Q^{-} = 10 \text{ nC}, \qquad E_e = 8 \text{ KeV}; \text{ J}_e = 300 \text{ A/cm}^2; \text{ (Krion-2)}$  $B = 6.0 \text{ T} \quad Q^{-} = 50 \text{ nC} \qquad E_e = 25 \text{ KeV}, \text{ J}_e = 2000 \text{ A/cm}^2$ 

(expected Krion-6T)

 $= 3.0 \ 10^{11}$  e.ch.

#### B = 9.0 T Q<sup>-</sup> = 150 nC E\_e=70 KeV, J\_e=12000 A/cm^2 ????

«Krion-2» ESIS:  $B \le 3.3$  T, electron injection energy  $E_e \le 6.5$  keV.

|                                     | <b>Fe<sup>24+</sup></b> | $Au^{32+}$                    | Au <sup>51+</sup>         | $Au^{54+}, Xe^{42+}$                               |
|-------------------------------------|-------------------------|-------------------------------|---------------------------|----------------------------------------------------|
|                                     | Nuclotron               | (stand)                       | (stand, ion-ion           | (stand,                                            |
|                                     | run,<br>2003            |                               | cooling is applied, 2007) | Nuclotron<br>run 2010<br>with<br>Xe <sup>42+</sup> |
| Binding<br>energy<br>E_b            | 2.05 keV                | 1.21 keV                      | 2.96 keV                  | 5.32 keV, 3.07<br>keV                              |
| Electron<br>injection<br>energy     | 4.0 keV                 | <b>4.0 keV</b>                | 5.0 keV                   | 6.5 keV                                            |
| Ionization<br>time, τ<br>Repetition | 1.5 s<br>0.5 Hz         | 2×10 <sup>-2</sup> s<br>40 Hz | 1.0 s<br>1.0 Hz;          | 1.5 s<br>0.67 Hz                                   |
| Extraction<br>time, t               | 8×10 <sup>-6</sup> s    | 8×10 <sup>-6</sup> s          | 8×10 <sup>-6</sup> s      | 8×10 <sup>-6</sup> s                               |
| N <sub>i</sub> per<br>pulse         | 1×10 <sup>8</sup>       | 5×10 <sup>8</sup>             | 1×10 <sup>8</sup>         | $1 \times 10^7$ $3 \times 10^7$                    |





Krion-2 installation on HV terminal of LU-20 (Nuclotron run 2010







Experimental conditions in ionization region (110 cm length): Drift tube temperature 4.2 K, Vacuum P <  $10^{-12}$  torr, B\_max= 3.3 T; IrCr cathode 1-2 mm diameter; e-gun Pierce type, I\_emiss.~8-12 mA.

e-string:  $J = 100 - 270 [A/cm^2]$ ,  $(5x10^{11} e/cm^3)$ . Number of reflections 100 - 300.

Q\_e\_total=10^11 e, Consumption power P=50 W!



3 temperature terminals : room (anodes), 78 K 3+3 drift tube sections ( injection of neutrals: gases, Ferrocene, Au (evaporation from tungsten wire)), Ionization region 110 cm , 26 separated druft tubes – 4.2 K. Cryopumping only ! Works excellent. Turbopumps are not used during operation (60 days or more). 5-6 days of anodes (mainly) outgassing by e-beam/string after beginning is enough .



1) NO any "MEMORY" effect was observed in 4.2 K drift tube sections!

2) Xe remnants were observed: localization 78 K drift tubes in injection region. Xe and more heavy gases (Rn) are partially frosen at 78 K,

and then could decopule drift tube wall under bombardment by other neutrals/ions of new working element.



WHY REFLEX MODE?

## **TO REDUCE CONSUMPTION POWER**,

# **SAVING ALL OTHER**

## **EBIS ADVANTAGES**





# EBIS $Q^{-} = Q^{+} = 10^{13} I_e L / E_e^{1/2},$

Q in elementary charges,  $I_e$  in A, L in m,  $E_e$  in V. For example: Q =  $10^{11}$  el.ch. = 15 nC. I=1 A, L=1 m,  $E_e$ =10000 V, P = 10 kW. Electron string is formed in nonlinear process via strong instability of trapped electrons and exists as a dynamic equilibrium of injecting and loosing electrons.

**Nonlinear development and partial saturation** (self-suppression) of various intabilities:

- Two beam instability (with l=1,2... in linear perturbation theory);
- Initial stage of Virtual cathode formation with loss of low energy tail.
- Not squeezed state; no low energy electrons. work is in progress



#### Tue Oct 27 12:32:12 MSK 2009















# Charge state distribution of Ar ions after 500 ms confinement in an electron string space.

#### I(Fe24+) = 150 μA in 8 μs



#### $I_{Ar16+} = 200 \ \mu A \text{ in } 8 \ \mu s$



Charge state distribution of Fe ions after 1100 ms confinement in space of an electron string.

# **Ion-ion cooling**



#### TOF spectra just after Au injection



Jul 19 2007



#### Au TOF spectra, mean q Au = 50.2+

Jul 19 2007 dT=2.90us Ionization time Ti = 700 ms150/700 Tc/Ti[ms] MTB 1.00us 20mV mannanan and many and a second with the second and the second s

#### Au TOF spectra, mean q Au = 50.2+

Jul 19 2007



Jul 19 2007



Jul 19 2007



#### GAS PULSE INJECTION FOR PRODUCTION OF HIGHLY CHARGED IONS

#### Ion-ion cooling of highly charged ions in ESIS

The Ion-ion cooling with use of C and O coolant ions produced at gas pulse injection permits to increase the Au<sup>51+</sup>ion yield

by factor 2.

The intensity of Au<sup>51+</sup> ions at ion-ion cooling was 10<sup>8</sup> per pulse.



Ion charge state spectrum after 1,1 s of confinement.







# Total Kr27+ ion pulse without ion-ion cooling - (blue) and with use of (CH<sub>4</sub>) ion-ion cooling - red.





#### **Preliminary results on ion-ion cooling**

• Ion-ion cooling effectively works: it allows to reduce ion losses considerably, approaching to the natural limit of trap capacity.

#### Further plans.

 Towards Au69+ intense beams (with new 6T Krion-6T source): cooling by the ions (Ar8+ ?) to avoid charge exchange with neutrals of coolant gas, produced at separate drift tube space of ESIS.

# Experimental set-up for pulse injection of methane into Krion-2 ESIS (schematic drawing).



- 2) Drift tube sections at 4.2 K
- 6) Methane freezing-evaporation cell.
- 7) The cell rod, covered with aluminized Mylar or graphite.
- 10) Copper wire, connected to 4.2 K terminal.
- 11), 12), 13), 14) Elements of the system for isolation of 10<sup>14</sup> molecules of methane.

P1 = 338 Tor

P2 = 0.54 Tor

P3= 8.7.10<sup>-4</sup> Tor

i.e. app. 10<sup>14</sup> in 3.2 cm<sup>3</sup>







#### **Expected parameters of new stand Krion-6T ESIS** 1) Magnetic field in ESIS: up to B = 6.0 T, 2) Electron injection energy: $E_e \le 25 \text{ keV}$ .

| Working<br>element/charge<br>state                              | Au <sup>31+</sup>                                                                                                                                                                     |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expected ion yield<br>N_i<br>(number of Au31+<br>ions in pulse) | $2\div4 \ge 10^9$                                                                                                                                                                     |
| Repetition rate                                                 | <b>50 ÷ 60 Hz</b>                                                                                                                                                                     |
| Extraction time<br>form the ESIS                                | $8 \div 30 \ge 10^{-6} = s$                                                                                                                                                           |
| RMS emittance                                                   | $\frac{0.6 \ \pi \ \text{mm mrad}}{(\text{for 8 x } 10^{-6} \text{ s extraction time});}$ $\frac{0.15 \ \pi \ \text{mm mrad}}{(\text{for 30 x } 10^{-6} \text{ s extraction time}).}$ |
| Peak current<br>in pulse                                        | up to 10 mA                                                                                                                                                                           |



#### Superconducting test coil (L=19 cm, 32 layers of SC wire) : preparation for testing in a liquid helium.





#### SC solenoid: 1.2 m length, 22 layers; technology was elaborated and manufacturing has

#### been done in ESIS group (VBLHEP, JINR)







#### SC solenoid inside of Krion-6T ESIS (left); test assembling of the quench protection system (right).





#### Nearest future plans:

- 1) First e-string tests are planned in October 2012.
- 2) Then, basic studies on e-string and heavy ion production in new range of relevant parameters (electron energy up to 25 KeV, confining magnetic field up to 6 T, et cetera)...
  - 3) ... towards Au65+ ÷Au69+ beams production for their possible acceleration on existing LU-20/Nuclotron facility (LU-20 accepts ions with charge state to mass ratio > 1/3) in 2013?



# Thank you for your attention!



#### TUBULAR ELECTRON STRING ION SOURCE



1-electron gun, 2- superconducting solenoid, 3-cryo-cooler, 4- reflector electrode, 5- thermal shielding at temperature of 40 K.

#### **ION OPTICAL SYSTEM**

• The method of the off-axis TESIS ion extraction was proposed to get TESIS beam emittance comparable with ESIS one.



OPERA 3D simulation of the ion optic system and the ion off-axis extraction channel.

•The extracted ion beam has an ellipsoidal shape ( $\Delta r_{i,} \Delta y_{i}$  are radial and azimuthal directions)  $\Delta r_{i} = 2 \text{ mm}, \Delta y_{i} = 8 \text{ mm}.$ 

•Normolized radial  $\epsilon_{r-n}$  and azimuthal  $\epsilon_{\phi-n}$  emittances of the extracted ion beam:

 $\epsilon_{r-n} \cong \beta_i \Delta r_i^2 / 4\rho_i \cong 0,05\pi \cdot mm \cdot mrad,$ 

 $\epsilon_{\omega-n} \cong \beta_i \cdot \Delta r_i \cdot \Delta y_i / 4\rho_i \cong 0,15\pi \cdot mm \cdot mrad.$ 

•The radial and azimuthal emittances of the ion beam accelerated to energy of  $eU_{ac} = 25 \cdot Z \text{ keV}$  $\epsilon_r \cong 5 \pi \cdot \text{mm} \cdot \text{mrad}$  and  $\epsilon_{\phi} \cong 20 \pi \cdot \text{mm} \cdot \text{mrad}$ .

