Electron gun and collector of RHIC EBIS and prospects of the electron current density increase for a 10A electron beam.

Alexander Pikin

Brookhaven National Laboratory

Outline

- 1. RHIC EBIS existing electron gun
- 2. RHIC EBIS existing electron collector
- 3. Drift structure
- 4. Prospects of increasing the electron beam current density in RHIC EBIS (gun with electrostatic focusing)

RHIC EBIS magnetic structure

RHIC EBIS electron beam parameters

Immersed electron beam

1. Electron current : $I_{el} = 10 \text{ A}$

2. Electron energy: $E_{el} = 20 \text{ keV}$

3. Magnetic field on the cathode: B_{cath} =1.4 kGs

4. Magnetic field in the center of the SC solenoid: B_{cent} =5.0 T

5. Area compression of the electron beam: $B_{cent}/B_{cath}=35.7$

6. Cathode radius: r_{cath} =4.6 mm

7. Emission current density: $j_{em} = I_e / (\pi \cdot r_{cath}^2) = 15.0 \text{ A/cm}^2$

8. Current density in the center of the SC solenoid: $j_{el} = j_{em} \cdot (B_{cent}/B_{cath}) = 535.5 \text{ A/cm}^2$

Electron gun simulation

I.V.Alyamovskiy:

$$\Delta r = 4.14 \cdot \frac{\sqrt{U_{\text{SSR}}(V) \cdot P_{\text{pl}}}}{B_{c}(Gs)} = 0.7 \text{ mm}$$

$$P_{gun} = 2.6E-6 \text{ A/V}^{1.5}$$

$$B_{cath}$$
=1.4 kGs

$$\Delta r = 0.6 \text{ mm}$$

$$\Delta r/r=0.13$$

Emission current density distribution

Electron gun design

Cathode materials

For EBIS with immersed flow electron beam the requirement on emission current density $j_{emission} > 10 \text{ A/cm}^2$. The only acceptable option is a high-temperature thermionic cathode. Candidates for the cathode materials: LaB₆, CeB₆ Scandate, IrCe According to the existing literature the evaporation rate of CeB₆ is approx. 30% lower, than of LaB₆. We are using IrCe cathodes (G. Kuznetsov)

10⁵ (Sunou) 10⁴ (Fright of the first of

Fig. 9. Gun lifetime with LaB₆ and Ir-based cathodes. G. Kuznetsov "High temperature cathodes for high current density" *Nuclear Instruments and Methods in Physics Research A 340 (1994) 204-208*

Desirable: $\underline{j}_{emission} \approx 13 - 15 \text{ A/cm}^2$, $\underline{T}_{cath} > 10000 \text{ Hours}$

LaB₆ cathode from BINP (G. Kuznetsov):

Design criteria:

for 20A 15 kV pulsed electron beam and 24 mA extracted ion beam

- Beam power removal: critical power density to water interface
- 2. Fatigue (lifetime)
- 3. Returned electrons
- 1. Ion optics (no loss, low aberration, flexibility)
- 2. HV holdoff, discharges
- 3. Vacuum: high pumping speed

E_prim=10.0A

E_prim=10.0 keV

K_{bacscat}=0.3 (copper)

N_{traj}=2000 (each of primary, secondary and backscattered)

Angular distribution: cosine

Energy spectrum – available from the published literature

Angular distribution of electrons

Backscattered electrons energy spectrum on Cu

I_{el} =10.0 A, E_{el} =10.0 keV, U_{repel} =-2.6 kV, $U_{ion\ extr.}$ =-7.0 kV

Axial power density distribution on cylindrical wall of EC. I_el=10A, E_el=10 keV

Region number		Total current (A)	Only primary
=======================================			7
0	14	4.2293E-04	
4	3849	1.2773E+01	
5	32	9.2713E-02 -	\rightarrow
			Only backscat

 I_{repel} =93 mA, approx. 600 watt T_{repel} >400°C

New collector optics

<u>Purpose of the modification:</u> exclude heating of the repeller electrode by the backscattered electrons

Modification:

- 1. The repeller is removed.
- 2. The electrodes are pulled out further from the EC entrance aperture
- 3. The distances between electrodes are increased
- 4. Radii of edges are increased to reduce the electric field
- 5. Electrode mounting are sturdier, wiring is better
- 6. General concept of ion optics is preserved.
- 7. Geometrical acceptance for injected ions is smaller

Electron beam simulation in a new optical configuration of EC

RHIC EBIS drift tubes

Considerations on DT ID choice:

- 1. Ion losses during the long confinement
- Space charge contribution to an axial extracting el-stat gradient
- 3. Alignment tolerance of the drift structure
- 4. Voltage requirements to the power supplies
- 5. Voltage holdoff, discharge conditions

High current density high current electron beam

Electron beam with electron current I_{el} =10 A and j_{el} ≈5,000 – 20,000 A/cm²

This is uncharted territory.

Main concern: will such electron-ion system be stable?

If successful, can find applications in many other EBIS/EBIT devices.

BNL consideration on electron gun with higher current density

BNL EBIS goals:

- 1. Reduce emittance of the extracted ion beam
- Reduce energy dissipated on EC, improve vacuum
- 3. Reduce residual gas influx into the ion trap
- 4. Increase charge state of extracted ions for NASA applications (higher energy of the accelerated ions

<u>Desired</u> current density: j_{el} ≈2000A/cm²

Not desired: dependence of jel on the e-beam neutralization

For BNL EBIS optimum would be an immersed electron beam with moderately high current density (combined electrostatic and magnetic compression)

Such gun looks complex and it is still a work in progress

