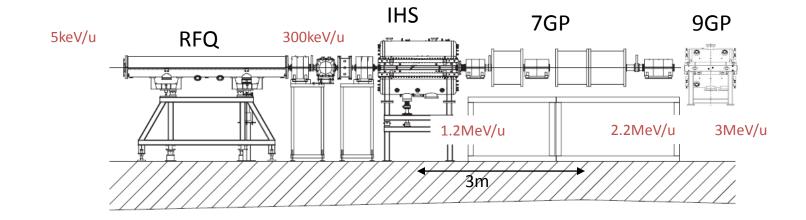
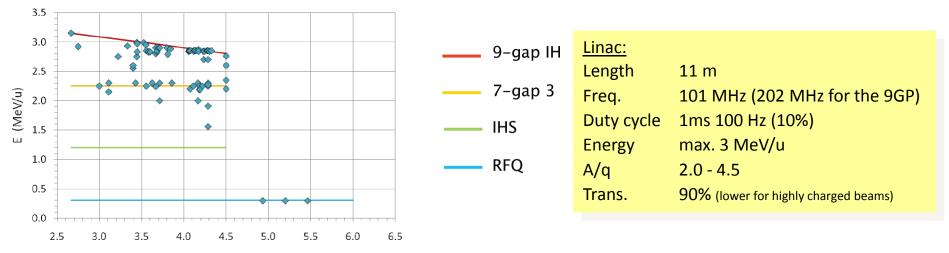
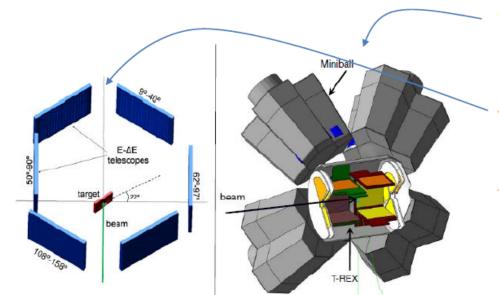

HIE-ISOLDE linac upgrade

- The REX and ISOLDE facilities
- **HIE-ISOLDE** linac
- HEBT and experimental stations
- Beam characteristics


D. Voulot, BE/OP, CERN


On behalf of Matthew Alexander Fraser; Fredrik Wenander; Brennan Goddard and the HIE-ISOLDE project team

REX linac


A/q

Present experimental program at REX-ISOLDE

Focus of experimental program at REX-ISOLDE:

Coulomb excitation few-nucleon transfer reaction studies fusion evaporation studies light particle elastic scattering

using radioactive beams Z=3 to 88, up to 3 MeV/u

Setup for scattering experiments of light nuclei, e.g. ¹¹Be

T-REX silicon barrel detector with Miniball germanium array for fewnucleon transfer reaction experiments

Miniball

Low-multiplicity Ge array + Si pixel particle detectors for Doppler correction

2nd beam line

Mobile experiments, e.g. scattering chamber

β-NMR experiment Test to produce polarized beams using tilted foils method

REX physics reference: P Van Duppen and K. Riisager, J. Phys. G: Nucl. Part. Phys. 38 024005 (2011)

Miniball reference: 'The Miniball at REX-ISOLDE', J. Van de Walle., EPJ to be published

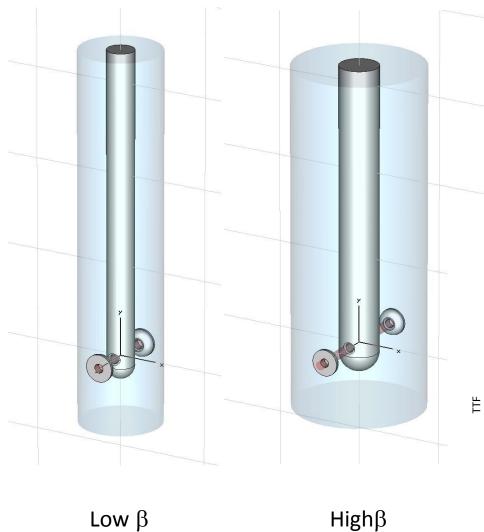
ISOLDE Statistics 2011

ISOLDE Shifts (8h):

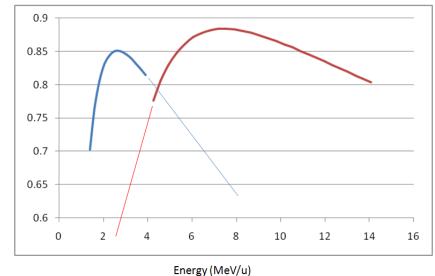
Scheduled: 471.5

Delivered: 329.5 (+134 for machine development and test) **REX-ISOLDE**: 147 (45%)

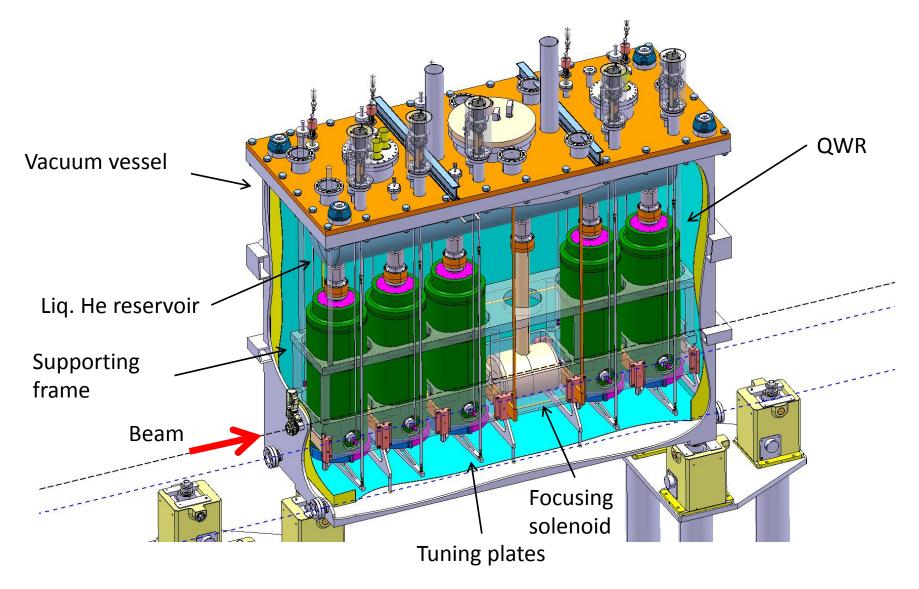
Category	Percentage
Nuclear structure using reactions	28%
Nuclear structure from ground-state properties and beta-decay	22%
Nuclear astrophysics	1%
Fundamental interactions	3%
Solid-state physics	12%
Biophysics and medicine	4%
total INTC and LOI RIB shifts	71%
Target and ion source development and Coordinator's reserve	29%

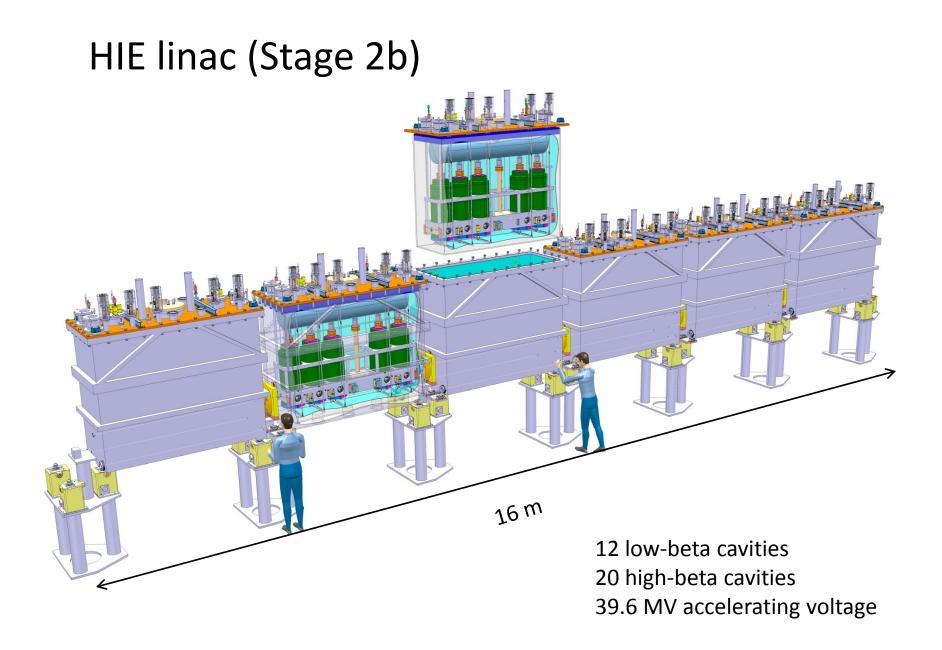

HIE-ISOLDE

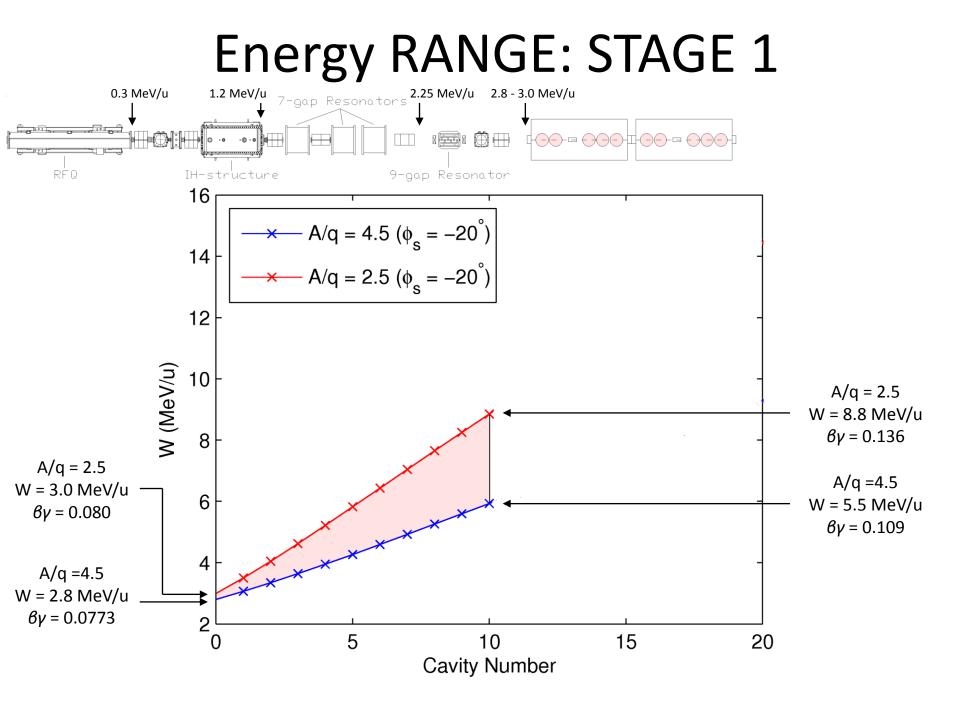
- A general upgrade of ISOLDE: High <u>Intensity</u> and <u>Energy</u>
 - High intensity: upgrade of target area, separators and charge breeder (design study)
 - High energy: HIE-LINAC
 - R&D activities for the linac (started in 2008)
 - Approved CERN project 2010
 - 5.5 MeV/u (stage 1) 2015 / 10 MeV/u (stage 2) 2016-2018
 - 36.5 MCHF, 50% financed through external collaboration

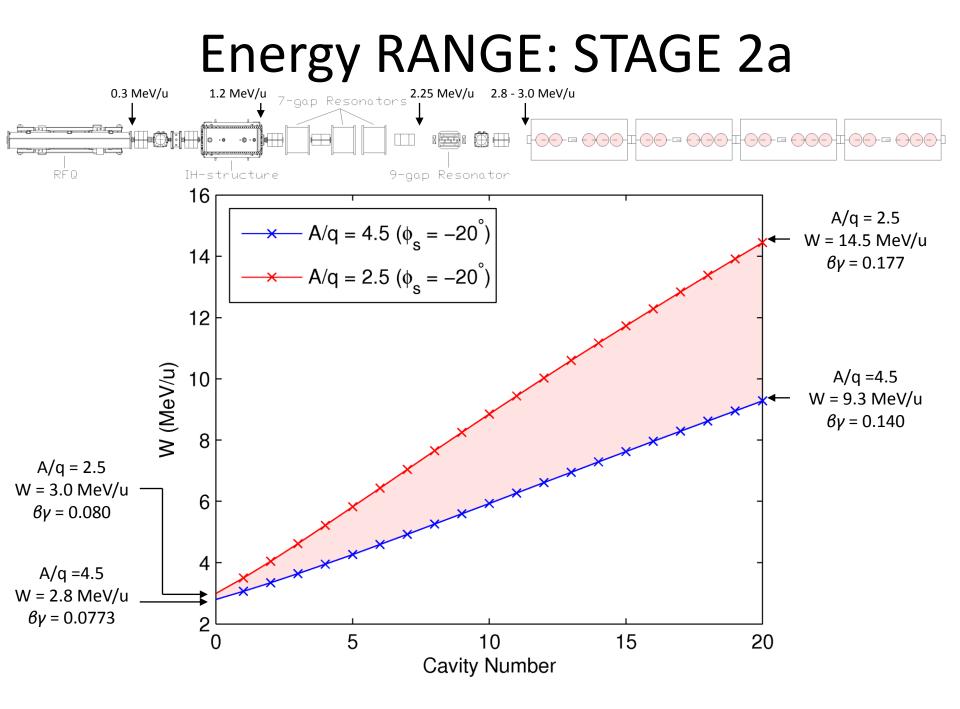

Motivations

- Superconducting linac => "array of small independent resonating cavities, equipped with their own small RF amplifier "
 - -> No high power amplifier (< 10W of RF diss. In the cavity)
 - -> High accelerating gradient (6 MV/m)
 - -> Short + independent cavities = high flexibility
 - -> CW operation

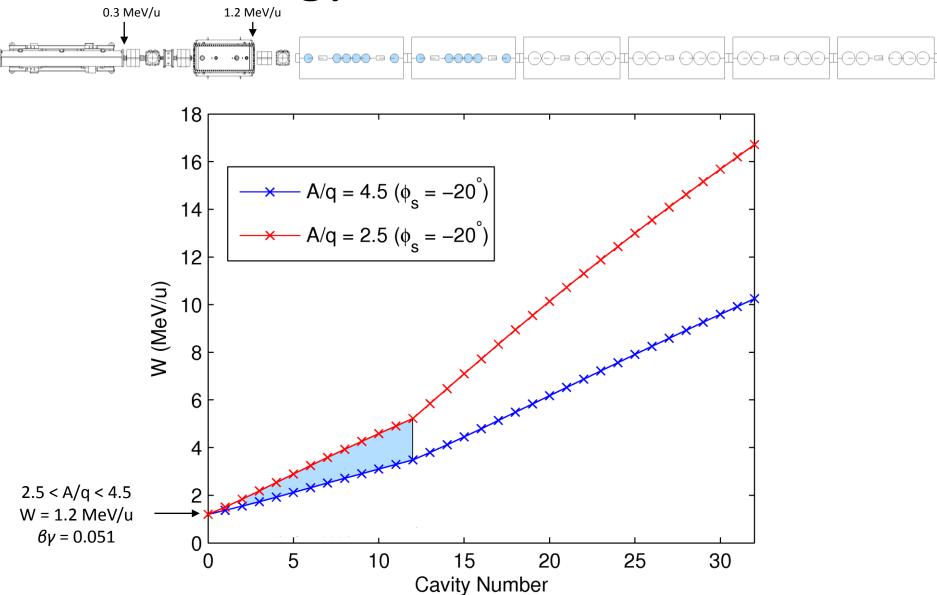

SC quarter-wave cavities

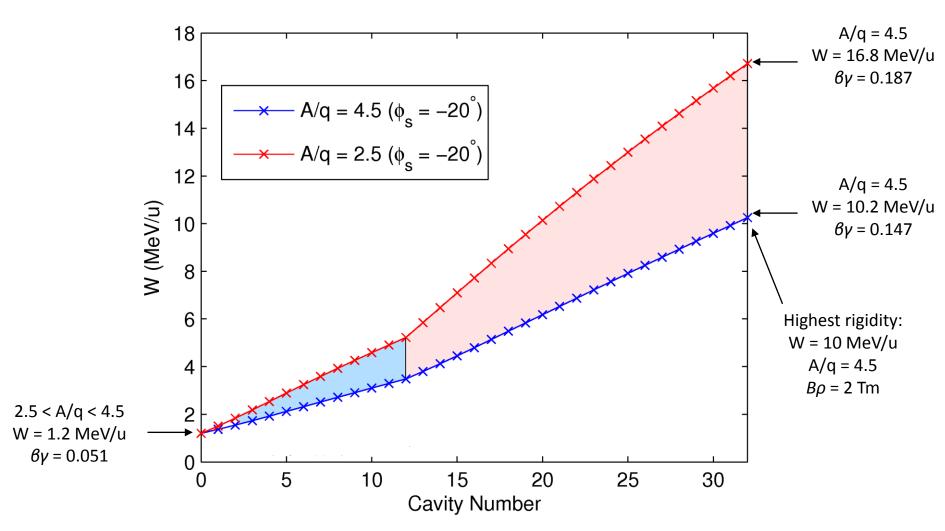



f (MHz)	101.28	101.28
β0	6.3%	10.3%
Gradient Ea (MV/m)	6	6
Inner Cond. Diam (mm)	50	90
Outer Cond Diam (mm)	195	300
Mechanical Length (mm)	215	320
Gap length (mm)	50	85
Beam Apert. Diam. (mm)	20	20
Rsh/Q (Ohm)	564	548
Q0 min for 6 MV/m at 7W	3.2 10 ⁸	5 10 ⁸
TTF max	0.85	0.9
No. of cavities	12	20



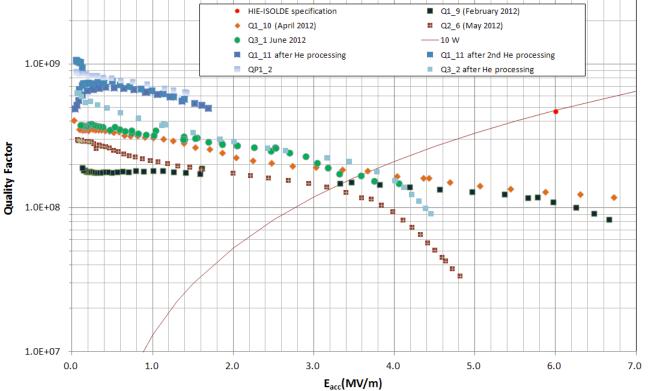
HIE High-beta Cryomodule





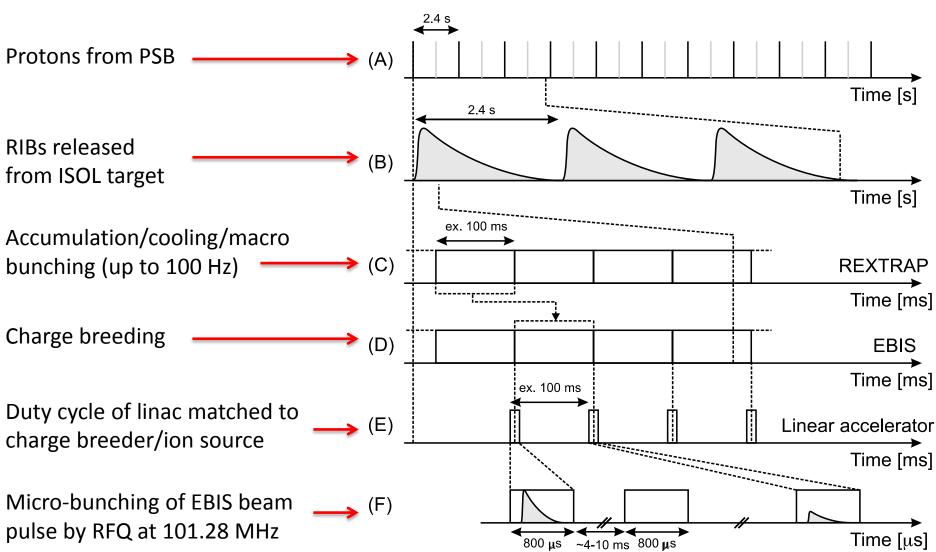
Energy RANGE: STAGE 2b

Energy RANGE: STAGE 2b

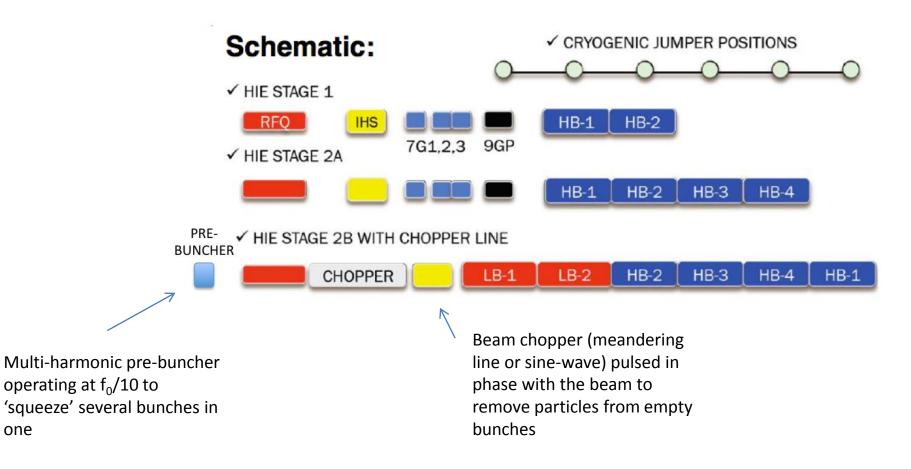


HIE-REX Cavity: Nb sputtered on Cu

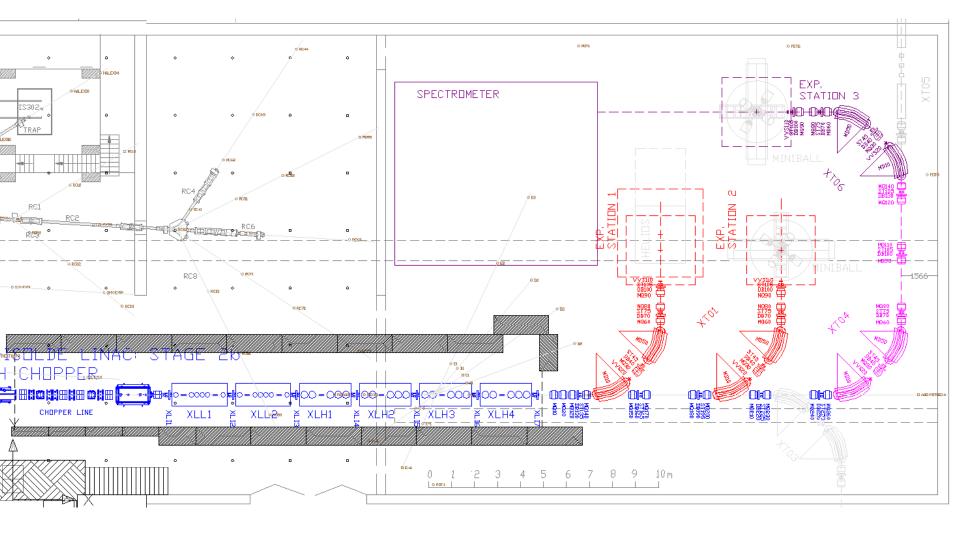
acity Cac



Beam characteristics


Characteristic	Value (for $A/q = 4.5$)
Particle type	Heavy (radioactive) ions (A < 238)
Mass-to-charge state (A/q) acceptance	2.5 < A/q < 4.5
Transverse emittance (normalised) (mm.mrad)	0.07 (rms) and 0.3 (90%)
Longitudinal emittance (π ns keV/u)	0.35 (rms) and 1.5 (86%)
Energy (MeV/u)	0.3 - 10
Average Beam Current	~ few particle per sec – 1 nA
Maximum rigidity (T.m)	2.05
Macro-pulse length (ms)	< 2
Repetition rate (Hz)	< 50

REX time structure



Chopper-buncher

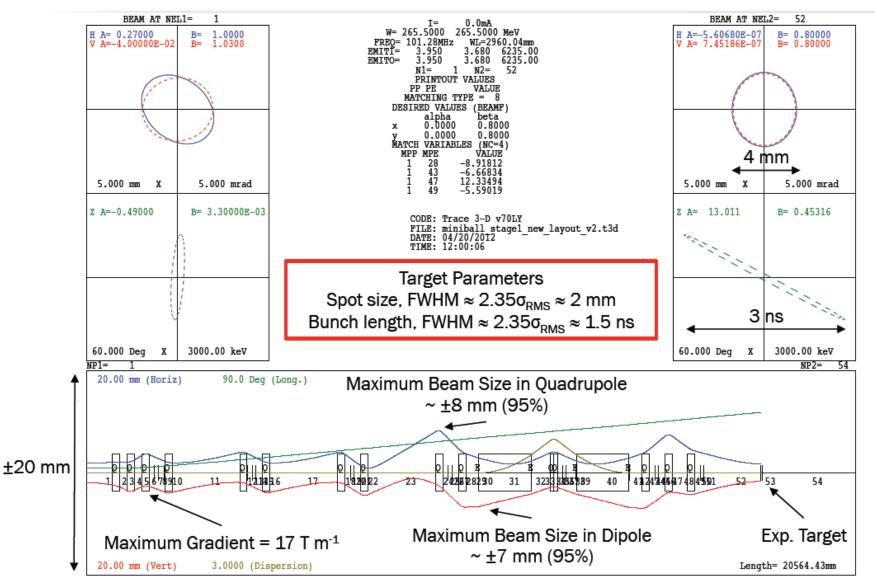
Goal: increase natural bunch spacing from ~10 ns (101.28 MHz) to ~100 ns for physics with TOF systems

High Energy Transfer lines and experimental stations

HEBT: SPECIFICATION FOR TARGET PARAMETERS

Tran	sverse Beam	Parameters*	
Energy (MeV/u)	Spot Size (mm) (FWHM)	$\epsilon_x = \epsilon_y$ (π m mrad) (norm, RMS)**	$\beta_x = \beta_y$ (m)
5.5	2	0.09	<0.9
10	2	0.09	<1.5
0.3	5	0.09	<1.2

Longitudinal Beam Parameters*

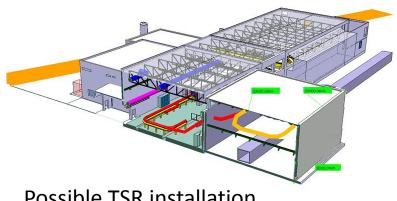

Energy (MeV/u)	Bunch Length (ns) (FWHM)	Energy Spread (%) (FWHM)
5.5	<2 ns	<0.1
10	<2 ns	<0.1

* Minutes of the Meeting of the HIE-ISOLDE Physics Coordination Group, 6th May 2011. ** Beam divergence specification consistent with assumed emittance.

HEBT BEAM OPTICS: PERIODIC TRANSPORT EXAMPLE: A/Q = 4.5, W = 5.5 MEV/U

HEBT BEAM OPTICS: EXP. STATION 1 EXAMPLE: A/Q = 4.5, W = 5.5 MEV/U

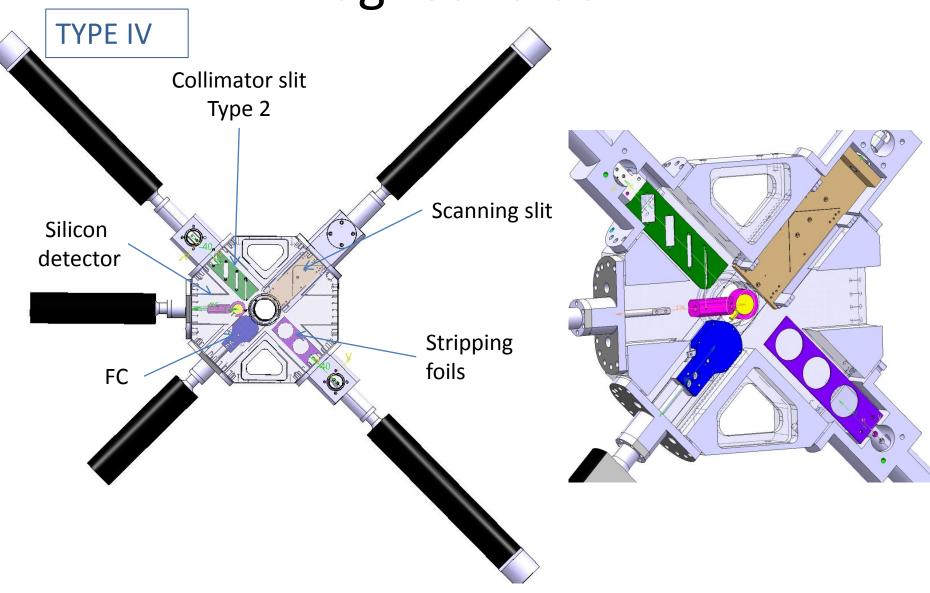
HIE Schedule

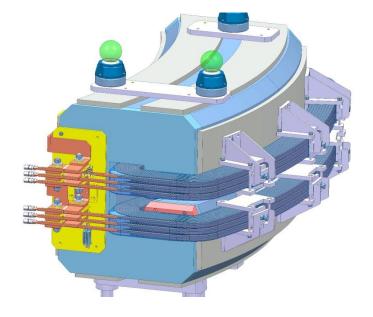

	2012					2013								2014									2015									2016								2017								
	1 1	FIN	1 A 1	LN	J A	S O	N D	1	F M	A M	μ.	J A	s	0	i D	1 6	M	AI	MJ	4	A S	5 0	N	D 1	F	MA	M	T T	А	S (N C	D 1	F	MA	M	1	A	s o	N	D J	FI	MA	M	L L	А	S (O N	D
Shutdown periods											Π																П			П					П		Π	T	\square					\square	\Box	П	Т	
Civil engineering								П			Π							П				Т	П				П			П			П		П			T	\square		\square			\Box	\Box	П	T	\Box
Ventilation		Т	П				П	П			П		П			П	Т	П	Т	Т	П	Т	П	Т	Т	П	П	Т	Т	П			П	Т	П	Т	П	Т	П	Т	П	Т	П	Т	\mathbf{T}	П	Т	П.
Cooling water																		П					П				П			Π			П		Π		Π	T	Π		Π			\square	\Box	П	Т	\Box
Power		Т	П					П			Π					Π	Т	П	Т	Т	П	Т	П	Т	П	П	П	Т	Т	П			П	Т	П	Т	П	Т	П	Т	П	Т	П	Т	\mathbf{T}	П	Т	П.
Safety	П																	П					П				П			П			П		П		Π	T	Π		Π			\square	\Box	П	Т	\Box
Compressor installation and commissioning	П	Т	П	Т	ГГ	ГГ	ТГ	П			П					Π	Т	П	Т	Т	П	Т	П	Т	П	ГГ	П	Т	Т	П			П	Т	П	Т	П	Т	П	Т	П	Т	П	Т	\Box	П	Т	П.
Cryogenics installation (cold box and transfer line)	П							П			П												П				П			П			П		П		Π	T	Π		Π		П		\top	П	T	\Box
Cryogenics commissioning	П	Т	П	Т	П	П	ТГ	П			Π				Τ	Π	Т	П			П	Т	П	Т	П	П	П	Т	Т	П			П	Т	П	Т	П	Т	П	Т	П	Т	П	Т	\mathbf{T}	П	Т	П.
Hall extension clearing	П										Π							П					П				П			П			П		П		Π	T	Π		Π			\square	\Box	П	Т	\Box
Dismantie REX beamlines	П		П					П			Π							П					П				П			Π			П		Π		\Box	T	\square		\square			\Box	\Box	П		\Box
Minibal move	П		П					П			П							П					П		Π		П			П			П		П		П	Т	П		П		П	\Box	\mathbf{T}	П		\Box
Tunnel extension + mecanical structures	П							П			Π							П					П				П			П			П		П		Π	Т	Π		Π			\square	\Box	П	Т	\Box
Cabling + piping	Π		П				П	П			Π											Т	П				П			Π			П	Τ	Π		П	Т	П		П		Π	\Box	\Box	Π		\Box
9-gap amplifier upgrade	П		П					П			Π												П				П			Π			П		Π		\square		\square		\square			\Box	\Box	П		\Box
Cryomodule 182 installation	П		П				П	П			П							П							Π		П			П			П		П		П	Т	П		П		П	Т	\mathbf{T}	П		\Box
RF installation and low level test (phase ref line)	П							П			Π																П			П			П		П		Π	Т	Π		Π			\square	\Box	П	Т	\Box
Power converters installation	П	Т	П	Т	ГГ	ГГ	ТГ	П			Π		П		Т	Π	Т	П	Т			Т	П	Т	П	ГГ	П	Т	Т	П	Т		П	Т	П	Т	П	Т	П	Т	П	Т	П	Т	\mathbf{T}	П	Т	П.
Power converters commissioning	Π							П			Π							Π					П				П			Π			Π		Π		Π	T	Π		Π				\Box	\Box	T	\Box
Magnet Installation and alignment	П	Т	П			П	П	П			П							П					П		П	П	П	Т	Т	П			П	Т	П	Т	П	Т	П		П	Т	П	Т	\mathbf{T}	П	Т	\Box
Magnet commissioning	П							П			Π							П									П			П			П		П		Π	Т	Π		Π			\square	\Box	П	Т	\Box
BI installation	П	Т	П				Т	П			Π							П					П				П			П			П		П			T	\square		\square			\Box	\Box	П	T	\Box
BI commissioning (HW)	П							П			Π							П					П				П			П			П		П		П		П		П			\Box	\Box	П		\Box
Vacuum installation	Π										Π												П				П			Π			П		Π		Π	T	Π		Π			\square	\Box	П	Т	\Box
Vacuum commissioning											Π																												П		П			\Box	\Box	П		\Box
Beam commissioning (phase1)	П	Т	П				Т	П			Π							П									П			П			П		П		\Box	T	\square		\square			\Box	\Box	П	T	\Box
Physics at 5.5 MeV/u	П		П					П			Π							П					П										П		П		П	Т	П		П			\Box	\mathbf{T}	П		\Box
Phase 2a installation	П										П							П					П												Π			T	\square		\square				\Box	\square	T	\square
Beam commissioning (phase2a)		T						1	3														N	6															and	0								
Physics at 10 MeV/u							-10	NN,	2												10	11	Λ_{ℓ}	9														at	22	T					Г			
Phase 2b installation					re	$_{Ui}$	100											3	r e	n	23	Y	IT							IT					T	61	26	M										\square
Beam commissioning (phase2b)		T			0.2	í I													5	Ĩ			\square					T		Π					P	T										Π		
Physics at 10 MeV/u with chopper line	IT		T					Π			П							П					П				T			IT			Π		Π													\square

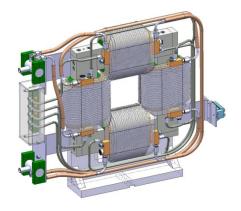
TSR@ISOLDE

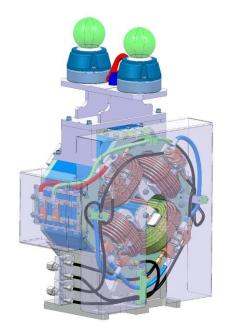
- Heavy-Ion Storage Ring + **HIE-ISOLDE**
 - No background
 - No energy straggling
 - Cold beam/Smaller beamsize
 - Reduced dead time/CW beam
- Approved by research board May 2012
- Aiming for start-up in 2015 as an experiment, integration as **CERN** facility towards 2018

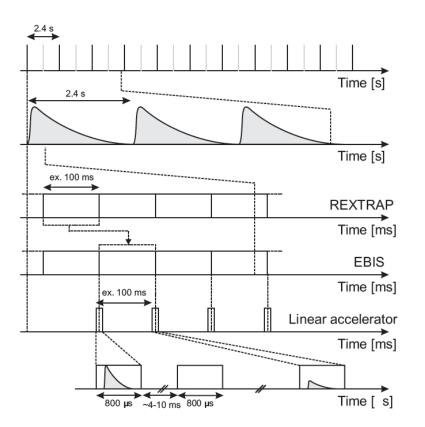
TSR at MPIK Heidelberg

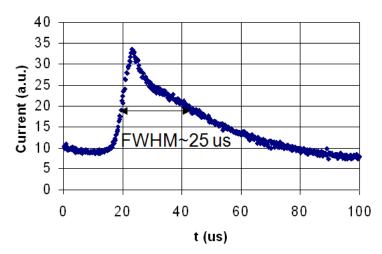


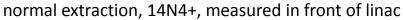

Possible TSR installation

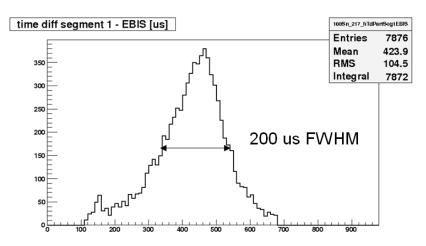

Spare slides


Diagnostic box

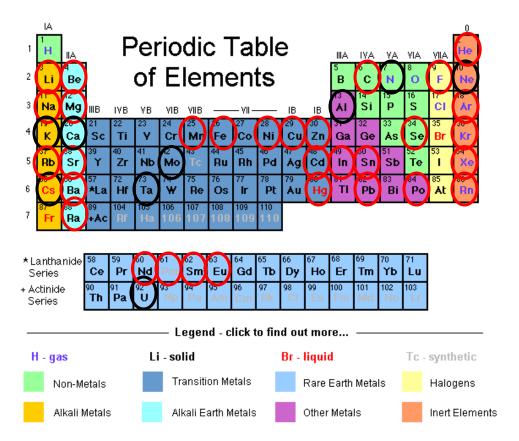

Magnets – present designs






Slow extraction

- Bunched beam = high instantaneous rate -> dead time
- Good signal to noise ratio



Slow extraction, 108Sn, measured at Miniball

⁶He 8,9,11Li ^{10,11,12}Be ^{10}C 17F 21,24,25,26,27,28,29,30Na 28,29,30,31,32Mg 44 Ar 61,62,63Mn ^{61,62}Fe 66,68Nj 67,68,69,70,71,73C11 72,74,76,78,807n ⁷⁰Se 72,88,92,94,96Kr ^{93,95,97,99}Rb 96,98Sr 100,102,104,122,123,124,126,128_{Cd} ¹⁰⁸Tn 106,107,108,109,110Sn 138,140,142,144Xe 140,142,148Ba ¹⁴⁰Nd ¹⁴⁸Pm 140,142,153Sm ¹⁵⁶Eu 182,184,186,188Hg 186,188,190,192,194,196,198ph 196,198,200,202,206PO 202,204,208,220,221Rn ²²⁴Ra

REX beam collection 2001-2012

>100 radioactive isotopes of 31 elements

A selection of stable elements charge bred