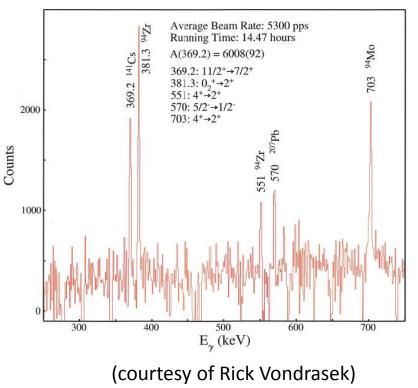

Low-contamination Rare and Exotic Beams (at CARIBU)

Sergey Kondrashev

October 16, 2012



CARIBU - Californium Rare Ion Breeder Upgrade



From "Messy" Beam at CB Output to "Clean" Postaccelerated Beam

At output of ANL ECR CB

Mass scan of background plasma constituents and charge bred ³⁹K beam showing peaks for 7+, 8+, 9+, and 10+ (courtesy of Rick Vondrasek). Post-accelerated ¹⁴¹Cs RI beam

Main Parameters of CARIBU EBIS Charge Breeder

Parameter	Low current e-gun	High current e-gun
Superconducting solenoid: length/ field	1 m/6 T	1 m/6 T
Diameter of the IrCe thermocathode	1.6 mm	4 mm
Electron beam current	0.2 A	2 A
Electron beam energy	~ 2 keV	~ <mark>5</mark> keV
Electron beam diameter in the trap	~ 230 μm	~ 580 μm
Electron beam current density in the trap	~480 A/cm ²	~750 A/cm ²
lon trap length	0.5 m	0.5 m
Trap capacity (in elementary charges)	~ 4•10 ¹⁰	~ 2•10 ¹¹

- $(q/A) \ge 1/7$ at CB output
- Warm bore superconducting solenoid
- Low-current e-gun to study efficiency gain at shell closures
- BNL Test and RHIC EBIS were used as prototypes

Sources of Beam Contamination in EBIS/T CB

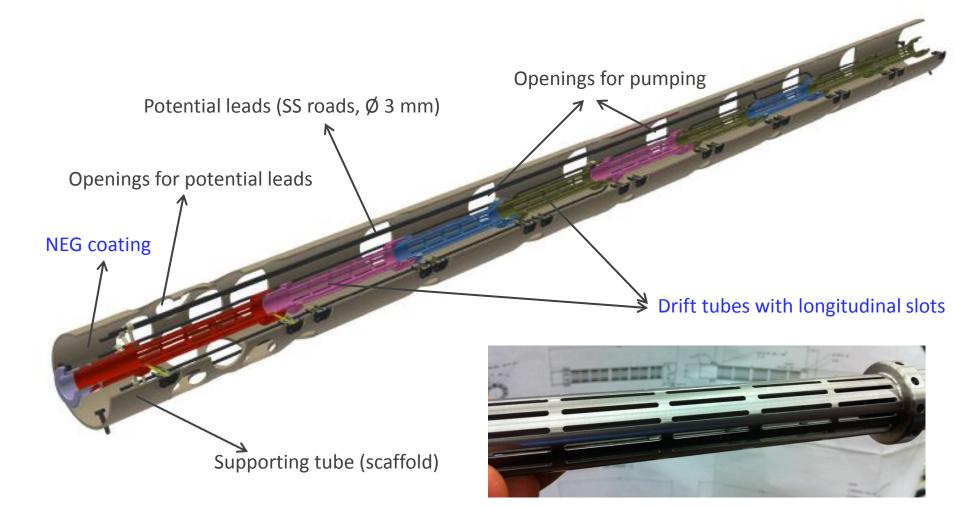
- Residual gas atoms and molecules
- Evaporated atoms of e-gun cathode, cathode heater and surrounding elements
- Electron beam induced desorption from collector walls
- Highly-charged ion induced desorption from drift tube walls

Only the first source of contamination is relatively easy to control.

How to Purify Charge-bred Ion Beam?

- Separation of different species in LEBT (ATLAS LEBT two 90° bending magnets, mass separation is about 500)
- Separation in linear accelerator? No, typical mass separation less than 100 (ATLAS linac doesn't provide further purification)
- Choose q/A of charge-bred rare isotope with the lowest intensity of surrounding background within LEBT resolution – easy to implement for EBIS CB by changing breeding time
- Residual pressure in the trap should be as low as possible to minimize background, although in many cases it can be not the main source of local contamination

Vacuum System of CARIBU EBIS CB


Similar to BNL RHIC EBIS:

- TMP and cryopump on each side of the trap
- Differential pumping between trap and heavily outgassing e-gun and collector chambers

Additional features:

- Drift tubes with longitudinal slots to enhance trap vacuum conductance
- NEG coating of trap supporting tube

CARIBU EBIS CB Drift Tube Structure

Number of Residual Gas Ions Inside CARIBU EBIS CB Trap

- Number of atoms/molecules ionized within 30 ms breeding cycle ~
 <u>2·10⁸</u> for residual gas pressure in the trap ~ 10⁻¹⁰ mbar
- Trap capacity (for 2 A electron beam) <u>~ 10¹¹</u> elementary charges
- Ratio of total charge of residual gas ions to trap capacity <u>is</u> <u>independent on electron beam current</u>, if electron beam current density in the trap is the same
- Degree of trap neutralization by residual gas ions <u>is less than few</u> percent already at trap pressure ~ 10⁻¹⁰ mbar
- Residual gas ions <u>are a major part of charge-bred beam</u> at trap pressure ~ 10⁻¹⁰ mbar
- Trap pressure <u>~ 10⁻¹² mbar</u> is required for the most intense rare isotopes to become a major part of the beam