# DUSEL Interdisciplinary Science Studies: Biology, GeoScience and GeoEngineering@DUSEL

[http://www.sanfordlab.org/publications/bge-sciencedusel ] Google: bge science dusel

Derek Elsworth, Larry Murdoch, TC Onstott, Duane Moser, Joe Wang [DuREC], Bill Roggenthen, Rohit Salve [Facility PIs] Antonio Bobet, David Boutt, Pat Dobson, Herbert Einstein, Leonid Germanovich, Steven Glaser, Tom Kieft, Catherine Peters, Eric Sonnenthal, Herb Wang [S4 PIs] .... and many, many others from the BGE DUSEL Community

December 18, 2012

# Outline

- Societal Imperatives for Geo-Science and Geo-Engineering (Needs)
- Science Drivers (Objectives)
  - Underground Universe (Physics and Astrophysics)
  - Dark Life (Biology)
  - Restless Earth (Geoscience)
  - Ground Truth (Geoengineering)
- DUSEL Initial Suites of Experiments (Approaches)
  - Distributed Experiments [FiberOptic/EcoHydrol/Drilling/Transp. Earth]
  - Facility-Based Experiments [CO2/THMCB/Frx]
  - Cavity Experiments
- Facility Layout with Experiments
- The Future of DUSEL? (Outcomes)

# Evolution of DUSEL and Its BGE Community

- 2000: Homestake closure announcement. Meeting with Earth science and physics communities
- 2001: Underground Science Meetings; Earth science, physics and geomicrobiology workshops
- 2002: NSF visit, ARMA/NRC and NeSS meeting [200 BGE participants]
- 2003: ARMA-NSF and EarthLab reports; ISRM-DUSEL Workshop; J' burg
- 2004: NSF S-process announcement, S-1 workshops
- 2005: S-2 applications, H-H selection + 2, AGU townhall, S-2 workshops
- 2007: S-3 Homestake award; ISRM-DUSEL Workshop, Lisbon
- 2008: Development of ISE DEDC
- 2009: S-4 Science awards [~230 Physics/~71 BGE senior investigators]
- 2010: S-4 Science awards completed
- 2010: DEDC transitions to DuRA [~700 physicists + ~300 BGE] Program Advisory Committee (PAC) formed NRC Review (Dec 2010)
- 2011: NSF-> DOE Program Review
  MREFC to NSF and National Science Board then Congress
  2013+: Initial experimental activities scheduled to begin

# Scientific Rationale and Societal Imperatives



## Example: Zero Carbon Solution? Enhanced Geothermal Systems

#### Requirements

- Geothermal gradient
- Natural/induced fracturing

#### Attributes

- Large scale
- Sustainable
- Peak load available
- Virtually emission free
- Small surface footprint

#### Challenges

- Prospecting (characterization)
- Accessing (drilling)
- Creating reservoir
- Sustaining reservoir
- Environmental issues e.g. induced seismicity

#### **Intrinsic Attributes**

- Scale dependent
- Environment dependent (stress, temp, pressure)
- Time dependent



# **Principal Attributes of a DUSEL**

- Broad access to an opaque block of rock (~km-scale)
- Depth and hence elevated stresses and temperatures
- Long-term occupancy, hence continuity



**Depth, z ->** Στρεσσ ανδ Τεμπερατυρε

# Facility – Sanford/Homestake Laboratory

#### LONGSECTION OF THE HOMESTAKE MINE



# **Biology, Geosciences, Engineering – S1 Science Drivers**

- Dark Life (Biology)
  - How deep does life go?
  - Do biology and geology interact to shape the world underground?
  - How does subsurface microbial life evolve in isolation?
  - Did life on earth originate beneath the surface?
  - Is there life on earth as we don't know it?
- Restless Earth (Geosciences)
  - What are the interactions among subsurface processes?
  - Can we view complex underground processes in action?
  - Can we forewarn of earthquakes?
- Ground Truth (Geoengineering)
  - What lies between boreholes?
  - How can technology lead to a safer underground?
  - How do we better harness deep underground resources?



# **Biology-Geosciences-Engineering** Summary Experiments

#### **Distributed Experiments**

CMMI Fiber-Optic Monitoring of R. MassesWang (UWM) + 6 others[CMMI+GEO]S4Deep EcoHydrologyBoutt (UMass); Kieft (NMT); Wang (UWM) + 8<br/>others0S4Subsurface Imaging and SensingGlaser (UCB) + 19 others[CMMI+GEO]

#### **Facility-Based Experiments**

S4 CO<sub>2</sub> Sequestration (LUCI)

#### CMMI Coupled THMCB Processes S4 Faulting Processes (FRX)

**Cavity Experiments** 

S4 Cavern Design for DUSEL

Peters (Princeton); Oldenberg/Dobson(LBNL) + 6 others [CMMI+CBET] Sonnenthal (LBNL) + 6 others [CMMI+GEO] Germanovich (Georgia Tech) + 7 others [CMMI+GEO]

Einstein (MIT); Bobet (Purdue) + 8 others [CMMI+GEO]

have a strong interactions with Physics research



# DISTRIBUTED EXPERIMENTS [FIBEROPTIC/ECOHYDROLOGY/DEEP DRILLING/TRANSPARENT EARTH]

# Fiber-Optic Strain and Tilt Monitoring of Rock Masses in Large Underground Facilities - GEOX<sup>™</sup>

 $\mathbf{S}_{hmin}$ 

#### Large Scale Deformability



#### Linking Deformability and Permeability



#### **Monitoring Deformation and Acoustic Events**



Events with magnitude >0.5 recorded by Friedel et al. between 7100 and 7250 levels

Rock-bolt



Experimental arrangement at 2000L using rock bolts for tiltmeter support

drift

# **Deep EcoHydrology – Science Drivers** Investigating the interactions between fluids, stress and life

# How Deeply and by What Mechanisms Does Life Extend into the Earth?

- Do geomechanical and hydrologic factors control the distribution of life as a function of depth and temperature?
- What patterns in microbial diversity, microbial activity and nutrients are found along this gradient?
- How do state variables (stress, strain, temperature, and pore pressure) and constitutive properties (permeability, porosity, modulus, etc.) vary at nested spatial scales and timescales?

## **Unique Attributes at DUSEL**

- Scale and Duration of Access
  - A window into the deep biosphere from base of photosphere to abiotic fringe zone
- Effect of Changing Habitat
  - Important for understanding ecological response
- Large-scale Tracer Test
  - Huge volumes of rock responding to transients
- Geologic Setting
  - Rock type similar to that underlying all continents





# **Subsurface Imaging and Sensing**

## **Geoscience Goals**

- Constrain source mechanisms
  - Full 3-D coverage
  - Proximal and enveloping measurements
  - Strong coupling
  - Ultra-low-noise environment
- Potential to take seismology from a 10+% to a 1% science

## **Geoengineering Goals**

 Condition monitoring of experiments for: stress, energy, deformation, failure modes......

Active Source

## Measure the Rock State?



# Subsurface Imaging and Sensing [Expt Layout]

## **Geoscience Goals**

- Constrain source mechanisms
  - Full 3-D coverage
  - Proximal and enveloping measurements
  - Strong coupling
  - Ultra-low-noise environment
- Potential to take seismology from a 10+% to a 1% science
- Gravity waves (DUGL)

## **Geoengineering Goals**

 Condition monitoring of experiments for: stress, energy, deformation, failure modes......
 Tilt from



# FACILITY-BASED EXPERIMENTS [CO<sub>2</sub>/THMCB/FRX]

# LUCI - Geologic Carbon Storage – Experimental Layout





# Transport and Reaction Processes Experiment – Science Drivers

#### **Key Scientific Question:**

How do mechanical and transport properties evolve and influence fluid chemistry and microbial populations?

#### **Intellectual Merit:**

Advance understanding of fault zones, geothermal reservoirs, magmatichydrothermal systems, ore mineralization, radioactive waste, other.

Process interactions and feedbacks are scale-dependent, complex and often enigmatic - requiring large-scale wellcontrolled *in-situ* experiments to understand response. Modeled concentration of chemical species around heater





## Permeability-drop in fracture with chemical reaction and collapse



# Transport and Reaction Processes Experiment – Experimental Layout

#### **Experimental Approach**

- a.) characterize site, b.) install infrastructure
- c.) heat d.) monitor e.) core samples
- d.) excavate (*mine back*) and describe.
- Hydrothermal Convection
- Biological Gradient Experiment
- Effective Reaction Rates
- Geothermal Stimulation Experiment

#### **THMCB S4 Tasks**

- Select candidate rock mass and tunnel complexes based on geological, mineralogical, hydrological and fracture data
- Preliminary design, refined through the following steps of characterization and pre-test modeling:
  - Laboratory experiments
  - Modeling
  - Evaluation of new technologies
- Development of WBS
- Working group meetings to refine design and costs

#### **Ellison Formation & Heaters**



#### **Experimental Layout**



# **Faulting Processes Experiment – Science Drivers**

**Hypothesis:** Faulting processes change with scale, so small laboratory experiments are incomplete representations of real faults. Larger experiments are needed to advance understanding of faulting.

## **Faulting Processes**

Propagation in intact rock Gouge development Friction laws Fault reactivation Corresponding seismic response Fluid effects Microbial interactions Sealing and healing many others....



# **Faulting Processes Experiment – Experimental Layout**



# **CAVITY EXPERIMENTS**

# Cavern Design and Instrumentation – Experimental Layout

**Vision:** Determine spatial- and temporal-scale behavior of rock masses for design, construction and long-term performance control of large caverns.



# Experimental Layout



Ecohydrology

# **Current Status?**

Funded Experiments

- 8 total S-3
- 3 Experiments Ongoing
  - GEOX
  - Seismic Imaging
  - Ecohydrology

Underground Research Laboratory Initiative (Joe Wang)

- Canadian SUMIT Initiative
- Paradigm shift/return to active mines

•