- Hot spot temperature
 - Which is the maximum temperature that we can assume for the design of the quench heaters (from 150 to 400 K)
 - Which experiments can we perform to define it ?
 - Instrumented quenches that give access to local temperature and verify degradation
 - Analytical techniques to trace the damage mechanisms
 - Such an experiment (or experiments ?) would be an ideal test bed for design and simulation codes
 - This applies to all brittle materials (Nb3Sn and HTS)

A team to design an ideal experiment

- On the other allowables
 - Temperature gradient ? Applies surely to HTS
 - Voltage criterion, and actual values for different coil (magnet) technology
- Experience on longer prototypes to extrapolate to final magnet configurations

- Time scales and detection thresholds for design, test and operation
 - QPS limits, based on experience and extrapolation
 - Detection time lag and rejection (filtering) possibilities
- Quench initiation and propagation
 - Propagation speeds (longitudinal and transverse) and influence on detection time
 - Heater delays (power, time scale, waveform, ...)
 - Block-to-block, layer-to-layer propagation

- Heater technology
 - Power density and voltage allowables vs. speed
 - Thermal contact to the coil
 - Resistance to heat treatment
 - Heaters for coils with improved heat transfer
- Coil heat transport enhancement (bridges)

- New detection techniques
 - New ideas seem to be far away from practice
 - Fibers are interesting: join the programs (as much as practical, e.g. Rayleigh, FBG, Brillouin ?) and drop the rest from the main line ?
- New protection techniques
 - Heaters are critical, explore alternatives and quench-back mechanisms
 - Subdivision ?