

2013 WAMSDO Workshop CERN, Switzerland, January 15th – 16th

Considerations for Quenching HTS Coils

Matthieu Dalban-Canassy

U.P. Trociewitz, D.K. Hilton, Y. Viouchkov, P. Noyes, J. Jaroszynski. J.W. Sinclair, W.D. Markiewicz, H.W. Weijers, P. Chen, N. Craig, E.E. Hellstrom, J. Jiang, M. Matras, D.C. Larbalestier

National High Magnetic Field Laboratory

Florida State University

Outline

- Our experience in REBCO coils
 - The path to 35.4 T
 - 32 T user magnet
 - Food for thoughts on REBCO
- Our experience in Bi2212 coils
 - The path to 33.8 T
 - Food for thoughts on Bi2212

Summary

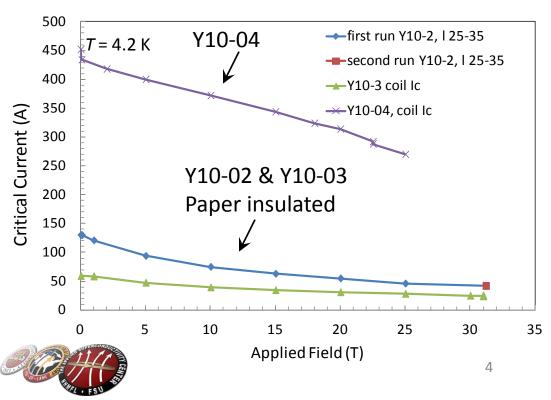
OUR EXPERIENCE IN REBCO COILS

- Path to 35.4T => Layer wound (LW) coil for very high field NMR demonstration coils
- 32T magnet => Double Pancake (DP) user magnet, LTS outsert, HTS insert

Mechanical Decoupling as a Solution to Delamination Test Coil Y10-04

uminosity

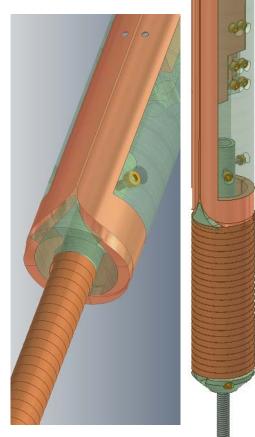
- Layer-wound coil
- Wet-wound coil, i.e. impregnated
- Conductor insulated with Polyester heat shrink tubing from Advanced Polymers, Inc. (avoid delamination)


=> NMR geared activities: Avoid current redistribution seen in noninsulated dry-wound coils and its impact on field stability

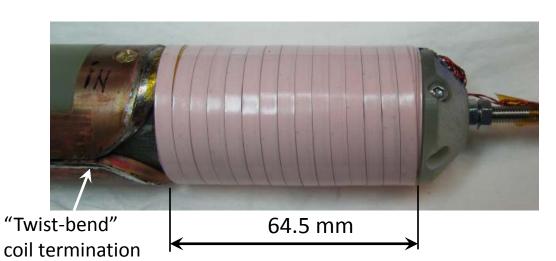
Coil reproduced short sample values taking effective field angle into account

EUCARD ACC

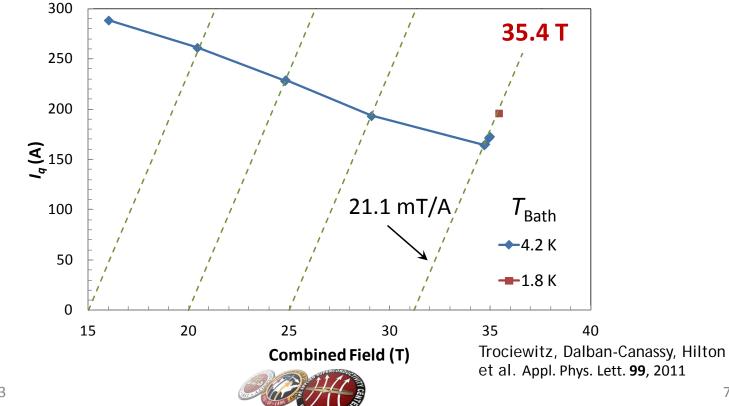
- Rapid cool-down to 77 K (thermal shock) reproduced previous 77 K data and did not degrade coil
- Decoupling works but it comes at a cost: thermal conductivity (300 K)
 - 🏶 Cu, Ag ~400 W/mK
 - Ceramics: ~ 1 W/mK
 - Plastics: ~ 0.1 0.4 W/mK


January 15th 2013

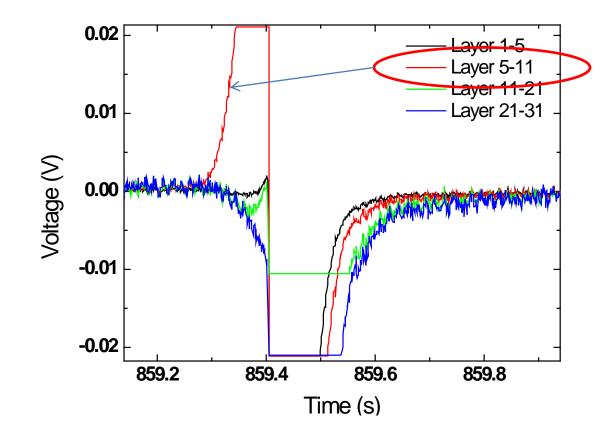
He Gas Bubble Trapping => New Terminal Design


- Early high field test coil failed at terminals
- Helium gas bubble trapping above <u>B</u>. B > 21 T²/cm
- New terminal concept: Twist-bend junction
 - Move terminal joint away from winding pack and high <u>B</u>.
 <u>B</u> area
 - Use copper conduction cooling
 - Compact design
 - Longer less resistive joints 7000 Top of insert Top of outsert 6000 5000 -BxdB/dz [T²/m] 4000 3000 = 0.007 m, B = 31 T, Ic = 250 A 2000 r = 0.007 m, B = 31 T, Ic = 200 A 1000 r = 0.007 m, B = 31 T, Ic = 0 AHe trapping limit 0 0.02 0.04 0.08 0.12 0.06 0.1 January 15th 2013 *z* [m]

REBCO LW High Field Coil

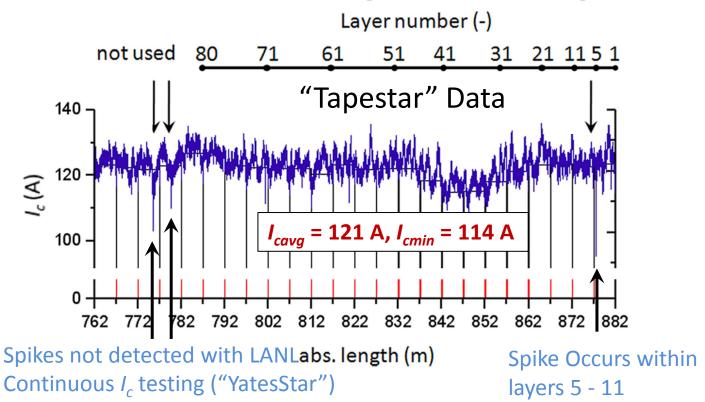

- Wet layer-wound, epoxy filled
- No splices
- Thin walled polyester heat- shrink tube insulated conductor
- Coil instrumented with array of voltage taps every 5 – 10 layers

Conductor & Coil		EM Properties	
Cond. Width [mm]:	4.02	Operating Current [A]:	200
Cond. Thickness [mm]:	0.096	Je (Engineering) [A/mm^2]:	518.24
		Jw (Winding) [A/mm^2]:	308.93
Inner Radius [mm]:	7.16	B(0,0) [mT]:	4221.01
Outer Radius [mm]:	18.92	Coil Constant (0,0) [mT/A]:	21.11
Height [mm]:	64.52	L[mH]:	8.90
Layers [-]:	80	Total Field Energy [J]:	187.92
turns/Layer [-]:	14.65		
turns total [-]:	1172		
Cond. Length [m]:	96.03		


Field Generation and Coil Load Line

- 4.2 T field increment achieved in 31.2 T background field
- No coil degradation
- **Introducing layer decoupling during coil manufacturing, bypasses transverse** stress weakness
- Stress levels >340 MPa and conductor current density $J_e \sim 500 \text{ A/mm}^2$ are possible

How Does the Coil Behave During Quench?



- **B** Layers 5-11 transition very early on (not theoretically the lowest I_c in the coil)
- Quench propagates into neighboring layers soon after

How do Coil and Conductor Properties Compare?

- Very high field magnets are possible -> NHMFL 32 T all s/c magnet project (uses ~10 km of conductor for 17 T REBCO section) => extensive testing needed
- Large long length inhomogeneities may cause sudden catastrophic coil failure during quench and need to be understood and best eliminated

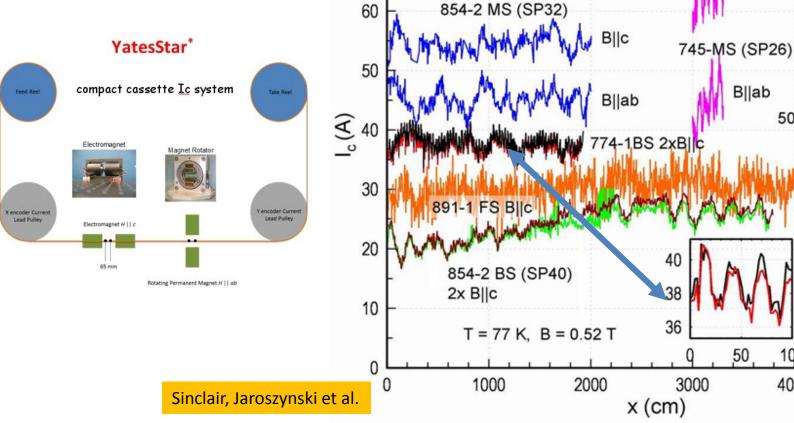
Reel-to-reel I measurements @ 77 K

B||c

501-FS (SP16)

774-1BS

2xB||c


100

4000

Bllab

B||c

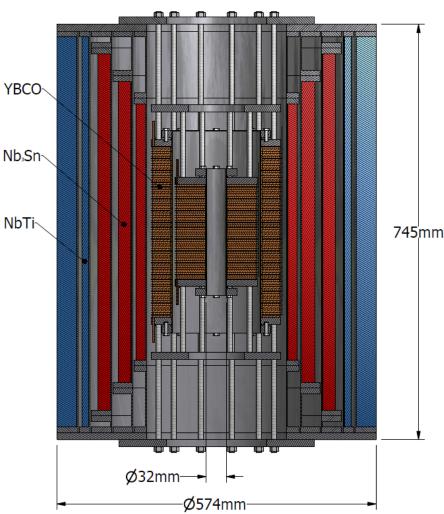
- Different tapes, rich "zoology", no defects!
- Periodicity due to knife *
- High reproducibility

70

5000

OUR EXPERIENCE IN REBCO COILS

- HTS R&D program => Layer wound (LW) coil for very high field NMR demonstration
- 32T magnet => Double Pancake (DP) user magnet, LTS outsert, HTS insert



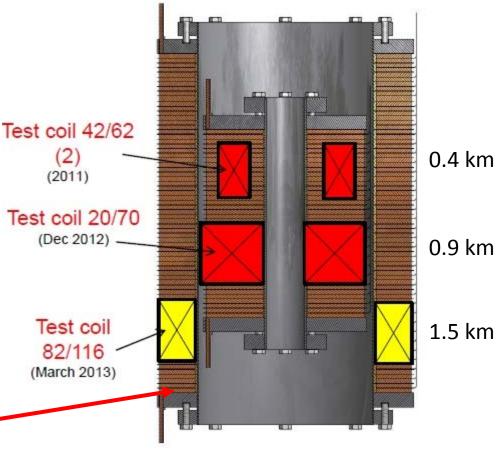
32 T All Superconducting User Magnet

- Total Field 32 T
- Field inner YBCO coils 17 T
- Field outer LTS coils 15 T
- Cold inner bore 32 mm
- Current 172 A
- Inductance
 619 H
- Stored energy 9.15MJ
- Uniformity (1 cm DSV) 500 ppm
- Dilution refrigerator < 20 mK</p>

Project Manager: Huub Weijers

Principal Investigator: Denis Markiewicz Co-Pl's: David Larbalestier, Steven Julian

January 15th 2013



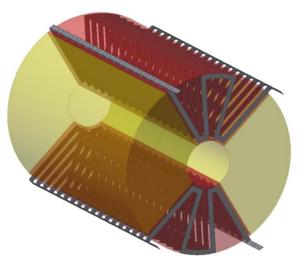
32 T All Superconducting User Magnet

- Outer magnet
 - 15 T, 250 mm bore, Nb3Sn/NbTi
 - Commercially supplied
- Inner coils
 - 17 T, 34 mm bore YBCO coils
 - In-house development
 - Coil winding technology
 - Joint technology
 - Insulation technology
 - Quench analysis and protection
 - Extensive component testing
 - YBCO characterization and quality check

CRITICAL POINT 16 T, 18 deg off ab plane YBCO Coils for 32 T Total \approx 10 km conductor

- Again significant variations between conductors
- Some conductors do not meet criteria at 18 deg off !!! => grading envisioned

Numerical model presented by W.D. Markiewicz at ASC 2012 to be available on European Superconducting News Forum


32 T Quench Protection Scheme

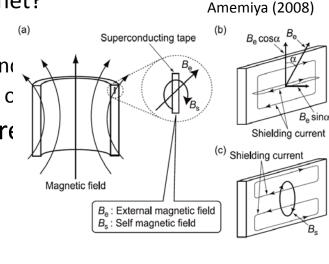
- Low quench propagation velocities, especially azimuthally and axially
- Passive protection methods are ineffective
- Active protection system with distributed
 heaters embedded in spacers between modules
- Performance of protection heaters being assessed: distribution, operation power, number of heaters in coil...



Test coil heater spacer

Distributed heater concept

32 T heater spacer


Food for Thoughts YBCO (1)

- Long length inhomogeneity may be/become an issue
 - What is the most sensitive zone in the magnet?
 - Where can a quench potentially occur?
 - At the lowest I_c according to the design (B and
 - At the lowest I_c driven by conductor defects c
- Screening currents may change the picture
 - Potential to severely reduce coil Ic
 - Impact of coil stability (Yanagisawa)
- Conductor geometry

EUCARD ACC

Luminosity

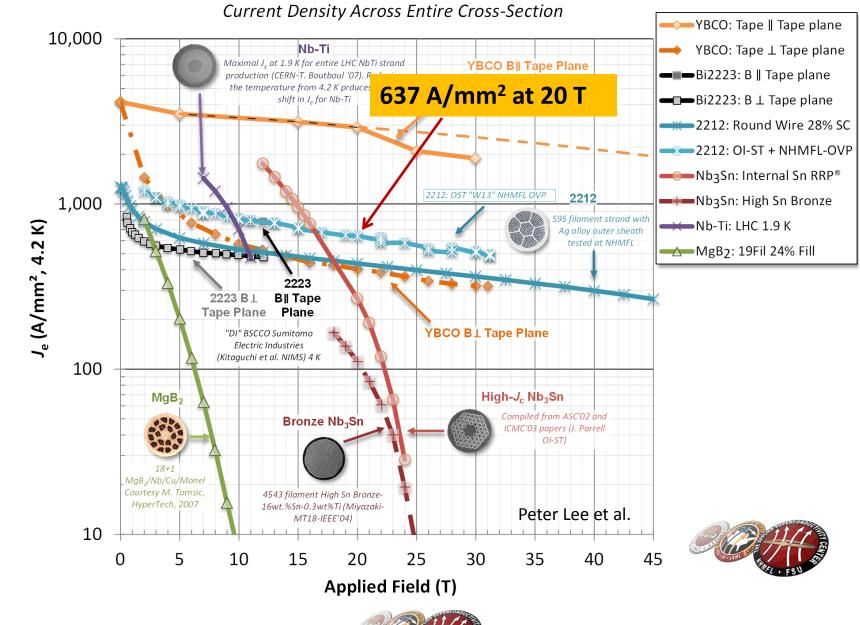
- Anisotropic: much lower I_{op}/I_c where B along ab plane => harder to protect against quench
- Physical geometry (layering, single filament) may lead to harder current redistribution in case of quench
- 77 K tests <u>cannot</u> be used to predict 4.2 K performance, but systematic LHe tests may become a show stopper in large systems

Food for Thoughts YBCO (2)

- Coated conductors in impregnated coils require an insulation
 - High mechanical and thermal integrity
 - Faster ramping than non insulated coils
 - Necessity of a thin highly thermally conductive insulation
 - High sensitivity to defects (single strand)
- He bubble trapping in large <u>B</u>. <u>B</u> regions = special terminal:
 - Regular right angle = resistive section in bubble region
 - Pig tails do not work physically with YBCO
 - Twist bent may limit the I_c, due to the conductor-field orientation in the twist
- Cabling technology is still fairly limited => limiting large magnet capabilities

OUR EXPERIENCE IN BI2212 COILS

- Old coils showed overall low transport properties
- OP process => Current Bi2212 J_e comparable to YBCO J_e with B // caxis
- Recent test: 2.6 T increment in 31.2 T background

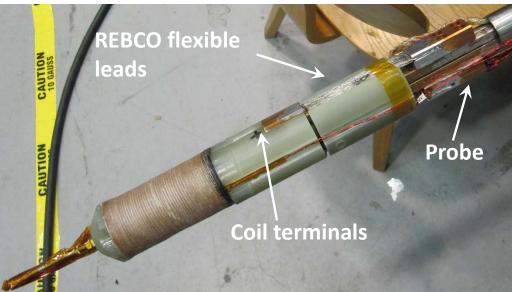


Increasing J_w for Bi2212 Coils?

- New densification process yielding J_e similar to YBCO along c-axis direction
- Development of thin insulation => nGimat, in-house development: 10 x thinner than conventional
- Densification of coils => changes the geometry => importance of epoxy for integrity
- Long length homogeneity still under question but expected to be much better than before densification

EUCARD ACC

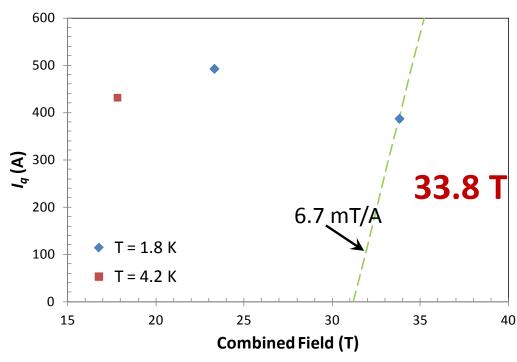
High Luminosity LHC



Bi2212 Coil for OPHT and 31 T Test

- Coil as built (as designed): 47 (50) turns, 8 (8) layers, 36.35 (37.38) mm OD
- 2 innovations to drive J_w >> 100
 A/mm²
 - OP process
 - Thin insulation (15 μ m)
- Insulation (TiO₂-PPC) requires a preliminary heat treatment to burn out the organics
- Then "standard" HT in 10 bar OP O₂-Ar gas mixture (1 bar O₂ partial pressure)

Configuration for 31 T test:


	and the same is a second se
Wire dia. (mm):	1.40
nGimat Insulation (mm):	0.015
Turn-turn non-tightness (mm):	0.085
layer-layer tightness (mm):	-0.065
Inner Radius (a1) (mm):	7.25
Outer Radius (a2) (mm):	18.17
Height (2b) (mm):	71.21
Radial Layers (-):	8
Turnss/Layer (-):	47
Total turns (-):	376
Conductor Length (m):	30.03

Field Generation and Coil Load Line

- 2.6 T Field increment achieved in 31.2 T background field (I_q = 388 A, J_w = 187 A/mm²)
- Slight degradation on inner terminal after 4.2 K runs
- Lower I_c on terminal due to space restriction in reaction furnace + He bubble
- Total of about 20 in-field runs at ramp rates varying from 2.5 – 50 A/s
- Potential for much higher I_c in coils:
 J_e = 252 A/mm² vs. 637 A/mm² in short sample

Food for Thoughts Bi2212

- Bi2212 is back in the game!
- Multi-filamentary round wire conductor
 - Provides "easy" current path around defects
 - Filaments surrounded by Ag: better current transfer compared to YBCO
 - Isotropic conductor
 - No or less screening currents
- Conductor mechanically fragile
- OP Wind and React process rather cumbersome
- Long length inhomogeneity still unknown with new processes though expected to be decreased
- Conductor not useable above 20-30 K or so

No quench issues so far !

- Small coils
- Highly instrumented
- Slow transition of HTS
- => Controlled quenches with external dump resistor

Won't be the same for larger magnets !

Summary

REBCO

- Insulation crucial in single strand => avoid delamination
- I_c non-uniformity problematic =>What is the I_c of the coil?
- Conductor geometry => single filament and anisotropic
- Screening currents in high radial field regions => Influence on coil I_c map and field quality
- Limited cabling capability
- Bi2212
 - New Over-Pressure process allows unprecedented J_e very close to values observed in REBCO
 - Insulation instrumental to increase J_w
 - Multi-filamentary with all-around Ag matrix: good current transfer around defects, better longitudinal and potentially transverse quench propagation
 - Mechanically weak conductor
 - Rutherford cabling capability potentially applicable

THANK YOU !

