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Outline

= Motivation for mechanical vibration (acoustic) sensing and
earlier developments in the field

= Magnets as mechanical resonators
" |nstrumentation for acoustic sensing

= Case study: correlation of acoustic and voltage imbalance
signals in the recent HQ magnet test (HQO1e3)

" |nductive sensing of mechanical vibrations and conductor
motion

= Future plans
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Why acoustic sensing?

LARP

* Voltage taps: this approach is not optimal for longer magnets and may be not
viable in newer complex magnet geometries (multi-layers, etc.)

* Magnetic guench antennas: data requires significant post-processing; permanent
access to the bore or adaptation to the magnet geometry is needed

Advantages of sensing sounds for magnet diagnostics:

- Propagation velocity is large (several km/s), so that detection can be
accomplished on a time scale that is comparable (or faster) to other techniques

- Using sensor arrays, sound sources can be localized with a few cm accuracy
through triangulation

- Selectivity for different kinds of events, through frequency and phase analysis

- Quter surfaces sensor mounting for non-intrusive detection

- Immunity to magnetic fields

- Sensors and acquisition hardware are relatively inexpensive, portable and easily
adaptable to various magnet configurations
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Earlier developments

LARP

Dislocation motion and micro-plasticity —> technical superconductors stability —>
superconducting magnets training —> active acoustic monitoring of SC magnets

P. P. Gillis, “Dislocation motion and acoustic emission”, ASTM STP 505, 20-29, 1972

* “Dynamic stress effects in technical superconductors and the "training" problem of
superconducting magnets”, G. Pasztor and C. Schmidt, J. Appl. Phys. 49, 886 (1978)

* H. Brechna and P. Turowski, “Training and degradation phenomena in superconducting magnets,”
Proc. 6th Intl. Conf. Magnet Tech. (MT6) (ALFA, Bratislava, Czechoslovakia) 597, (1978).

e “Acoustic emission from NbTi superconductors during flux jump”, G. Pasztor and C. Schmidt,
Cryogenics 19, 608 (1979).

e “Sources of acoustic emission in superconducting magnets”, O. Tsukamoto and Y. lwasa, J. Appl.
Phys. 54, 997 (1983).

* “Discussion on acoustic emission of a superconducting solenoid”, M. Pappe, IEEE Trans. on Magn.,
19, 1086 (1983)

e “Acoustic emission monitoring results from a Fermi dipole”, 0.0. Ige, A,D. McInturf and Y. lwasa,
Cryogenics 26, 131, (1986)

* “Mechanical Disturbances in Superconducting Magnets-A Review”, Y. lwasa, IEEE Trans on Magn,

28 113 (1992)
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Sound generation in superconducting magnets o

LARP

BERKELEY LAaB

Singular events

e Sudden mechanical motion of a cable portion or coil part
* Cracking / fracture of epoxy, de-laminations, etc...

Potentially, also:

e flux jump, as current re-distribution in the cable leads to the local
variation of the electromagnetic force

e quench development, as formation of a hot spot leads to the local
thermal expansion. It that leads to the change in local stress that
propagates away with a speed of sound

“Singular events” are mostly associated with well-localized sources. They generate
longitudinal (pressure) waves that propagate radially from the source with a speed of
sound. Wave fronts then gets partially reflected by the boundaries, converted into
resonant vibrational modes of the structure and into heat.

Continuous perturbations

* Mechanical vibrations (various flexural, hoop, “breathing” and other deformation
modes of coils, shell and support structures)
* Background noise (helium boiling, cryostat vibrations, etc.)
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Long coils can be thought of as solid “bars” or “rods”

Ax = Vs < where Yis Young
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(pressure wave) HE T P the density
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Think GPS |
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\| Instrumentation

BERKELEY LaB

Piezosensor Cryogenic preamplifier

« SM118 type piezoelectric ceramics, * GaAs MOSFET-based amplifier
polarized across thickness * Linear bandwidth of 0-100 kHz
* OD10mm xID5 mm x Thickness 2 mm, * 300 -1.9 K operation temperature range
o f =(154 +4) kHz Converts impedance down to ~1 k(2 significantly

improves S/N ratio, allows use of reqular “twisted pair”

DAQ connections in the cryostat instead of the coaxes

Software

il

* Yokogawa WE7000 i
simultaneous multi- |
channel DAQ system

e 100 mV-100 V range

* uptolMHzspeed

LabView-based software
for waveform analysis,
re-sampling and
location triangulation of
the sound source

©l

ML

i
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Localization tests at RT using HQ Coil 14

Position Graph
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Sound speed: V.~ 4.1-4.3 km/s
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Installation on the HQ magnet

Sensor 2 is installed at the top plate
(bolted to the magnet shell)

.....

Sensor 1 is installed at the bottom
“Available” (not optimized) locations were used  load plate (bolted to the axial rods)
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HQ vibrations resonant spectrum (room temp.)
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Extraction at 5.5 kA @f@
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When current is extracted from the magnet, sounds are recorded (step-like change of
elastic strain?), followed by a prolonged (0.5-1 s) “ringing” of the structure at its
resonance modes, with occasional “bursts” of mechanical activity (thermal relaxation?)
Magnet is a good mechanical resonator with Q~100!
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HQ experimental setup

» Magnet imbalance signal is formed by subtracting negative half (Coils 5,7) from
the negative (Coils 8,9) of the magnet, then amplified x40.

» Sound signals from both sensors, magnet imbalance and magnet current are
recorded at 1 Ms/s; the time window is 0.2 s.

» Acquisition is triggered when either imbalance or sound is above the threshold

level.

Imag A Imag

,=10870 A

9 kA [—

»
»

75 A/s t 75 A/s '

Attempted current ramps
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BERKELEY LaB

RRO3: Ramp up to 9 kA and back down

=  Sound triggered = Sound triggered
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Current of the triggered events Sound amplitude of the triggered events

Threshold settings:
 Sound: 5mV
* Imbalance: 3 V (amplified; true imbalance threshold is ~75 mV)
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N Events during a current ramp into quench

RRO4: Ramp to quenchat 75A/s | =10870 A

Current at the trlggered events Sound amplitude at the triggered events
12000 ————————— = Sound triggered —————t—v———| = Sound triggered
' Imbalance triggered 5001 a Imbalance triggered
10000 - 4 Sound and imbalance Ao Sound and imbalance
8000 4 ] 400 . _:
| s | £ 300
g 6000+ - =
— ' ' g : . :
4000 - s : > 2001 . ]
] 1 '."' L F "
2000 - ff . 100 - e s .
] | E f. " - .‘ nl. E
(O & NS —— N TN B oiu,‘,w,f, — “ —
0 100 200 300 400 0 100 200 300 400

t (S) t(s)

Four possible scenarios are observed:

1. Imbalance variation without any associated sound (below 5 kA)

2. Imbalance variation associated with weak sound signals (below 5 kA)

3. Stronger sounds without association with imbalance variations (above 8.5 kA)
4. Stronger sounds associated with imbalance “spikes” (around 10-10.5 kA)
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Sounds of magnet (low current)

* Some imbalance variations at low currents are associated with (weak) sounds!
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e Sounds at higher magnet current

Much stronger sounds are observed, or, occasionally, are correlated with a
that are either not correlated with any short “spike” in the imbalance signal:
imbalance variations:

Sensor 1 waveform 9628 A Sensor 1 waveform 10036 A /\
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Origin of the sounds?

BERKELEY LAaB

2440 A 10036 A
10— 12 10
Sensor } ] 0.6 Sensor 1
_ Sensor 2 1110 Sensor 2 18
5[ Imbalange || | | 0.4+ Imbalance 1
- f I
_ A A0 N8 [
s . Al il ] 0.2}
E OMMMWW%WM \ 6 > I
! ! VR \\ / | \w‘ o 0.0 Pariyscrr iy !
@ a / \\} \ W \W] o” | i "
=R AN Y (s 02} Y
5l el _
2 041
L T R S S ! 06—l .
0.0 0.5 1.0 15 2.0 0 60.5 1.0 15 4
t (ms) t (ms)

The 0.63 ms delay corresponds to the
~2.6 m distance, which would be outside
of the magnet length. The sound is likely
produced during the (long) imbalance
variation, but not at its onset.

The 0.11 ms delay corresponds to ~0.46 m
distance =>the sound is produced within
the magnet length.

Current re-distribution in the cable triggers Mechanical motion event is triggering
sound? the imbalance?
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Frequency of the sounds
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Location of the sound sources
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It appears that the sources of strong sound generated in HQO1e3 ramps above 9 kA are
located near the bottom (return end) of the magnet
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“Sound” from the Quench Antennas

[y —— HQO1d magnet, ramping at 100 A/s

IMMALS
International Magnetic
Measurements Workshol
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Mechanical vibrations

Inductive quench antenna is an electromagnetic
microphone! It picks up vibrations of the
current-carrying (or magnetized) structures

By correlating EM QA and piezo-sensor signals,
one can potentially differentiate between flux
jumps, conductor motion and other mechanical
motion in magnets

M. Marchevsky et al., ASC 2012 presentation
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Future testing opportunities

Upcoming test of the high-field dipole magnhet HD3 at LBL:

We plan to have both, inductive QA and the piezo-sensors installed.
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Proposed positioning of the piezosensors on the magnet: four wedges that
are in direct mechanical contact with the windings

Upcoming test of the LARP HQ02 magnet:

At least two acoustic sensors can be installed on the endplates; some kind of
inductive pickup QA may also be installed, t.b.d.
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EEEEE Next steps / challenges

* Filtering out the resonant modes and improving selectivity for small
signals

* Developing microphone arrays and algorithms for precise localization

* Quantifying mechanical energy release and conductor motion
amplitudes observed with piezo and EM sensors

* Acoustic quench detection system?
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Conclusions

* Amplified piezosensors, in combination with cryo-electronics, modern data
acquisition and processing techniques show good potential for real-time
characterization of various mechanical events in superconducting magnets
during ramping, quench and recovery

 HQ magnet produces increased acoustic emissions (seemingly unrelated to FJ)
and high-frequency (>50 kHz) vibration “bursts” when energized above 9kA.
The latter are occasionally correlated with the short imbalance spikes and most
likely caused by stick-slip motion of the conductor

* Inductive pickups sensors they provide a unique insight into conductor motion;

can be developed and used in conjunction with acoustic devices to improve
selectivity for the specific mechanical and electrical events

Listening to magnets sounds like fun!
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