Quench in high field YBCO insert dipole
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Overview of the case

> Insert will be wound from a cable consisting of two 12-mm
wide custom-stabilized-strengthened YBCO tapes. Two of
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Overview of the case

> Insert

» inductance: 4 mH
» operation current: 2800 A
> self-energy: 15.7 kJ

» FRESCA Il

» inductance: 64 mH

> operation current: 10500 A

> self-energy: 3.53 MJ (225 X that of insert)
» Mutual inductance 9.3 mH

> total energy 3.68 MJ

» mutual energy 8.7 x that of insert
» Maximum insert terminal voltage 800-1000 V

— maximum dump resistor 0.29 Q



Starting points

» FRESCA Il is the big guy, we focus only on the quench
simulations of the insert and how to protect it and the
influence of protection on FRESCA I

» We need to know how quench evolves in insert — simulate
quench

» We need to know how fast we can discharge the insert and
what is its influence on the FRESCA Il — do simple circuit
simulations



FEM quench simulations of HTS magnets

Simulating quench in an HTS magnet

» HTS magnets don't want to quench easily, at least in
simulations. Options for triggering quench
1. Quench the coil with a heater — unrealistic temperatures in
the hot spot in the beginning
2. Force critical current to some value below /. in some region —
if region is too small, there are several seconds to quench —
long simulation times
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» HTS magnets don't want to quench easily, at least in
simulations. Options for triggering quench
1. Quench the coil with a heater — unrealistic temperatures in
the hot spot in the beginning
2. Force critical current to some value below /. in some region —
if region is too small, there are several seconds to quench —
long simulation times
» Quench doesn't propagate to the whole coil — don’t simulate
the whole coil (quench can also be difficult to detect,
especially at low currents)

» How to get critical current characteristic for such a cable?
Did anyone ever measure I.(B, T,6) over a wide range of
parameters? If you buy new batch of tape, has it similar
properties than the samples? — we used certain
approximation for /..
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Simulating quench in an HTS magnet
» Our FEM approach

» We use custom-built code for quench simulations which we
constantly develop

» We focus on characteristics which are important for quench
and leave other details for other specialists (postprocessing,
basis functions, ...) — we develop our code within Gmsh
environment directly ontop of Gmodel and Riemannian
manifold interfaces.

» All solvers (including matrix assemblers) are built by us in
C++ with help from many GNU licensed libraries.

» We can separate the magnetic problem from the thermal (at
least the meshes), and also combine if needed. We are free to
build in FEM software what ever we need — within the limits of
time (and money).



Simulation results

Step 1: compute field distribution (for /. computations add the
contribution from FRESCA 11)

Magnetic flux density Y
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Simulation results

Step 2: simulate quench without any detection, terminate when
Thot spot = 400 K, now circuit simulator wasn’t included due to low
inductance

» Mesh
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Simulation results

Step 3: determine when detection threshold voltage (100 mV) is
reached, how normal zone propagetes etc
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Simulation results

Step 4: Circuit simulations

» Possible protection circuits
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Simulation results

Step 4: Circuit simulations

> Insert fast discharge
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Simulation results
Step 4: Circuit simulations

> Insert fast discharge
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Simulation results
Step 4: Circuit simulations

» FRESCA Il quench and insert dischange
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Simulation results

Step 4: Circuit simulations

» FRESCA Il quench while insert in open circuit
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Simulation results

Step 5: conclusion (not a new one): this small coil can be
protected with only a dump resistor BUT

» How could we discharge the magnet as fast as possible and
what is the influence of this to the PSU of FRESCA 117

» Option to consider: if FRESCA Il quenches, could we first
discharge insert and then activate the quench protection of
FRESCA 11?7 How to include the PSU of FRESCA Il to
simulations?

» Protection of very large HTS magnets is much more difficult:
margin to T is high — effective quench heaters cause
problems



Discussion - open questions

» How to get reliable scaling law for I.(B, T,0)?

» How difficult is it to protect HTS magnets having large stored
energies?

» What is the influence of AC-losses during quench in such a
wide coated conductor?



Summary

v

YBCO insert magnet in EuCARD project was introduced

v

Quench in the magnet was studied

v

Possible protection schemes for the insert were considered

» Open questions were presented



Thank you for your attention

You can find this presentation and summarizing paper also from
my home page
http://antti.stenvall.fi



