
Quench in high field YBCO insert dipole

Antti Stenvall

Department of Electrical Engineering

Electromagnetics

Tampere Finland

http://www.tut.fi/smg

firstname.lastname@tut.fi

WAMSDO-13
CERN, January 15-16 2013



Acknowledgements

This work is carried out in EuCARD project WP 7 HFM:
Superconducting High Field Magnets for higher luminosities and
energies, Task 7.4 Very high field dipole insert

◮ CERN: J Fleiter,

◮ CEA-DSM-IRFU-SACM, Saclay, France: M Devaux, M
Durante, P Fazilleau, T Lécrevisse, and J-M Rey
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Overview of the case

◮ Insert
◮ inductance: 4 mH
◮ operation current: 2800 A
◮ self-energy: 15.7 kJ

◮ FRESCA II
◮ inductance: 64 mH
◮ operation current: 10500 A
◮ self-energy: 3.53 MJ (225 × that of insert)

◮ Mutual inductance 9.3 mH
◮ total energy 3.68 MJ
◮ mutual energy 8.7 × that of insert

◮ Maximum insert terminal voltage 800-1000 V
→ maximum dump resistor 0.29 Ω



Starting points

◮ FRESCA II is the big guy, we focus only on the quench
simulations of the insert and how to protect it and the
influence of protection on FRESCA II

◮ We need to know how quench evolves in insert → simulate
quench

◮ We need to know how fast we can discharge the insert and
what is its influence on the FRESCA II → do simple circuit
simulations



FEM quench simulations of HTS magnets

Simulating quench in an HTS magnet

◮ HTS magnets don’t want to quench easily, at least in
simulations. Options for triggering quench

1. Quench the coil with a heater → unrealistic temperatures in
the hot spot in the beginning

2. Force critical current to some value below Ic in some region →

if region is too small, there are several seconds to quench →

long simulation times
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◮ HTS magnets don’t want to quench easily, at least in
simulations. Options for triggering quench

1. Quench the coil with a heater → unrealistic temperatures in
the hot spot in the beginning

2. Force critical current to some value below Ic in some region →

if region is too small, there are several seconds to quench →

long simulation times

◮ Quench doesn’t propagate to the whole coil → don’t simulate
the whole coil (quench can also be difficult to detect,
especially at low currents)

◮ How to get critical current characteristic for such a cable?
Did anyone ever measure Ic(B ,T , θ) over a wide range of
parameters? If you buy new batch of tape, has it similar
properties than the samples? → we used certain
approximation for Ic .
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Simulating quench in an HTS magnet

◮ Our FEM approach
◮ We use custom-built code for quench simulations which we

constantly develop
◮ We focus on characteristics which are important for quench

and leave other details for other specialists (postprocessing,
basis functions, . . . ) → we develop our code within Gmsh
environment directly ontop of Gmodel and Riemannian
manifold interfaces.

◮ All solvers (including matrix assemblers) are built by us in
C++ with help from many GNU licensed libraries.

◮ We can separate the magnetic problem from the thermal (at
least the meshes), and also combine if needed. We are free to
build in FEM software what ever we need – within the limits of
time (and money).



Simulation results

Step 1: compute field distribution (for Ic computations add the
contribution from FRESCA II)



Simulation results

Step 2: simulate quench without any detection, terminate when
Thot spot = 400 K, now circuit simulator wasn’t included due to low
inductance

◮ Mesh
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Simulation results
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Simulation results
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Simulation results

Step 3: determine when detection threshold voltage (100 mV) is
reached, how normal zone propagetes etc
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Simulation results

Step 4: Circuit simulations

◮ Possible protection circuits
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Simulation results

Step 4: Circuit simulations

◮ Insert fast discharge
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Simulation results

Step 4: Circuit simulations

◮ Insert fast discharge
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Simulation results

Step 4: Circuit simulations

◮ FRESCA II quench and insert dischange
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Simulation results

Step 4: Circuit simulations

◮ FRESCA II quench while insert in open circuit
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Simulation results

Step 5: conclusion (not a new one): this small coil can be
protected with only a dump resistor BUT

◮ How could we discharge the magnet as fast as possible and
what is the influence of this to the PSU of FRESCA II?

◮ Option to consider: if FRESCA II quenches, could we first
discharge insert and then activate the quench protection of
FRESCA II? How to include the PSU of FRESCA II to
simulations?

◮ Protection of very large HTS magnets is much more difficult:
margin to Tcs is high → effective quench heaters cause
problems



Discussion - open questions

◮ How to get reliable scaling law for Ic(B ,T , θ)?

◮ How difficult is it to protect HTS magnets having large stored
energies?

◮ What is the influence of AC-losses during quench in such a
wide coated conductor?



Summary

◮ YBCO insert magnet in EuCARD project was introduced

◮ Quench in the magnet was studied

◮ Possible protection schemes for the insert were considered

◮ Open questions were presented



Thank you for your attention

You can find this presentation and summarizing paper also from
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