
Geant4 Navigation on a GPU

Previous Work: Otto Seiskari (2010)

 Port of core of Navigation exists

 5 types of solids: box, orb, tubs, cons, polycone

 Physics volumes: only placements

 Has “normal” and “voxel” navigation

 Defines clones of Geant4 classes through structs.

 Without physics

 Uses Macros to span OpenCL and CUDA

Previous Work: G4VPhysicalVolume

typedef struct G4VPhysicalVolume
{
 G4RotationMatrix frot;
 G4ThreeVector ftrans;
 GEOMETRYLOC G4LogicalVolume *flogical;
 // The logicalvolume
 // representing the
 // physical and tracking attributes of
 // the volume
 GEOMETRYLOC G4LogicalVolume *flmother;
 // The current mother logical volume

}
G4VPhysicalVolume;

My Work: Goals

 Initially to simulate e- and Gamma particle
interactions

 Two implementations exist

 We are in touch with the French team and have requested code
of gamma & e- physics

 New focus: voxel navigation – critical for HEP

 to improve the performance of the navigation code.

 extend the functionality to additional solids

My Work : First steps

 Get existing code to run

 Compilation errors

 System –

 ATI Mobility Radeon 5700

 AMD APP SDK 2.7 with OpenCL 1.2 on Ubuntu 12.04

 Error: kernel arguments can't be declared with types

 bool/half/size_t/ptrdiff_t/intptr_t/uintptr_t/pointer-to-pointer:

__global G4VPhysicalVolume *worldVolumeAndGeomBuffer

My Work : First Steps

 Code runs on the system, after some changes

 Current Specification -:

 ATI Mobility Radeon 5700

 AMD APP SDK 2.5

 OpenCL 1.1

My Work : Debugging the code

 Code compiles with OpenCL 1.1

 Problem with pointers on GPU

 CPU GPU

 X 0001

Geometry
start

G4Logical
Volume

G4VPhysi
calVolume

X0002 X0050

X 0060 X0061 X0062

X 0001 X0002 X0050

X 1000

Geometry
start

G4Logical
Volume

G4VPhysi
calVolume

X1002 X1050

X 1060 X1061 X1062

X 0001 X0002 X0050

My Work : Debugging the code

 Solved the problem

 Relocation on GPU

 Move pointer offsets

 Calculate new addresses

 New way of getting address

 (int) starting_buffer

 64-bit compatibility doubtful

 Both methods confirmed to work

 Confirmation by testing

My Work : Creating Tests

 Testing procedure

 Allocate buffer on GPU

 Add test integers to struct definition

 Assign values to these ints on CPU

 Implement/Modify kernel

 Move these ints into buffer on GPU

 Transfer back

 Compare

 Even with tests, debugging with OpenCL can be hard

My Work : Automating Tests

 Created a set of tests

 Check for Geometry –

 Confirm offsets of pointers on GPU

 Confirm density matches

 PhysVol->LogicalVol->Solid->Material->Density

 Check Distance –

 Basic check.

 Confirms step == distance moved

 Automated with Macros

 Tests are Solid basis for future improvements

My Work : Optimisation

 Challenge-

 Avoid overhead of Switch statement for solids (for ‘Virtual’ call)

 Different threads cannot run different code

 To get performance all must work on the same type of solid

 New algorithm-

 Threads execute more common code

 Calculate steps, one solid type at a time.

 Uses fast local (shared) mem

 Implemented as a New type of navigation

Challenges

 Algorithms may have to be altered

 OpenCL can be challenging.

 CUDA is more C-like

 OpenCL and gpuocelot not easily debugged.

Challenges

 New tools from AMD should help ease the problem

 Good support for Windows.

 gDebugger, APP Profiler ..

 Code not tested for

 64bit GPU compatibility

 Newer versions of OpenCL

Open Issues

 The following is an error on OpenCL 1.2 but only a
warning in OpenCL 1.1

 Error: kernel arguments can't be declared with types
 bool/half/size_t/ptrdiff_t/intptr_t/uintptr_t/pointer-to-pointer:
__global G4VPhysicalVolume *worldVolumeAndGeomBuffer

 Allocation of local memory is only successful from
kernels
 Allocating from within (inline) functions that are called by the kernel

gives-:
 error: variable with automatic storage duration cannot be stored in

the named address space

 The main kernel has register spilling.
 Maybe newer GPUs with more register memory may not have this

problem

The way forward

 The next steps for the project-

 Support more (all?) of Geant4 geometry definition

 More tests

 Documentation

 If the Physics definition from French team can be used, we
might be able to run one complete example on the GPU

Thank You
Questions?

