Overview of the Heavy Ion Storage Ring TSR

Manfred Grieser

Max Planck Institut für Kernphysik, Heidelberg

TSR@ISOLDE Workshop, CERN, 29-30 October 2012

The accelerator facilities at MPIK

heavy ion cooler storage ring **TSR**

The heavy ion storage ring TSR

Multiturn injection at TSR@Isolde

Multiturn injection at TSR@Isolde

transverse phase space

if $\Delta t \leq 25$ turns $\Rightarrow \approx 80$ % of the injected ions can be captured

Beam profile after multi turn injection beam: ¹²C⁶⁺ E=73.3 MeV

ions

Transverse electron cooling

ECOOL Stacking

Cooling time T_{cool} of a multiturn injected ion beam

definition of transverse cooling time

The cooling time is the time it takes to cool 80% of the particles outside the cooled region into the marked region

$$T_{cool} \approx const \cdot \frac{A \beta^2}{q^2 n_e}$$
 (0.03< β <0.16)

inverse cooling time $1/T_{cool}$ as a function of B

normalized to q^2/A and $n_e = 10^8 \text{ cm}^{-3}$

Beam life-time T for some ions

	Ion	Energy	Pressure	cooled	uncooled	cooled	expl.	uncooled ex	pl
60 h		[MeV]	$[10^{-11} \text{ mbar}]$	[S]	[S]	[s]		[S]	
→ 00 II	р	21	4	220000		180000	REC		
	HD^+	2	7		5			DI	[S
	$^{7}\text{Li}^{+}$	13	6		48	41	ST	41 S'	Т
	$^{9}\mathrm{Be}^{+}$	7	6	16	16	12	ST	12 S'	Т
	${}^{12}C^{6+}$	73	6	7470		5519	REC	5630 M	S
	$^{28}{ m Si}^{14+}$	115	6	540	260	424	CAP	493 CA	4P
	${}^{32}S^{16+}$	196	5	450		554	REC	1200 CA	4P
	${}^{35}\text{Cl}^{15+}$	157	6	366		306	CAP	375 CA	٩P
	${}^{35}\text{Cl}^{17+}$	202	6	318	366	402	REC	735 CA	\ P
	${}^{56}\text{Fe}^{22+}$	250	5	77		90	REC	278 CA	λ Ρ
	⁵⁸ Ni ²⁵⁺	342	5	60		89	REC	374 CA	λ Ρ
	${}^{63}Cu^{26+}$	510	6	122		166	REC	622 CA	λ Ρ
	74 Ge $^{28+}$	365	5	45		59	REC	162 CA	λ Ρ
	80 Se $^{25+}$	480	5	204		179	REC	384 CA	\ P
	¹⁹⁷ Au ⁵¹⁺	710	5	23	51				

Intensities for a few ions achieved with ECOOL stacking

	Ion	E [MeV]	life time[s]	Intensity [µA]	
	р	21	220000	1000	$/N \approx 4000^{-32}S^{16+}$
	$^{16}\mathrm{O}^{8+}$	98		750	
	$^{12}C^{6+}$	73	1700	1000	$\mathbf{N} = \frac{1}{\mathbf{I}_{inj}} = \mathbf{M} \cdot \mathbf{\mathcal{E}}_{m} \cdot \mathbf{\Pi}_{r} \cdot \mathbf{I}$
	³² S ¹⁶⁺	195	450	1500	$\left(1/T_{cool} T_{cool} > 0.2s \right)$
	³⁵ Cl ¹⁷⁺	293	318	1000	$n_r = \begin{cases} 51/s & T_{cool} \le 0.2s \end{cases}$
inchoherent	$^{45}Sc^{18+}$	178		380	$\begin{bmatrix} 0.8 & n_r = 1/T_{cool} \end{bmatrix}$
tune shift	⁵⁶ Fe ²²⁺	250	77	70	$\varepsilon_{\rm m} = \begin{cases} 1 & n_{\rm r} < 1/T_{\rm cool} \end{cases}$
limit	⁵⁶ Fe ²³⁺	260	74	128	
	⁵⁸ Ni ²⁵⁺	342	60	600	I ₀ equilibrium intensity
	⁶³ Cu ²⁵⁺	290	49	280	T- life time
	⁶³ Cu ²⁶⁺	510	122	100	T _{cool} cooling time of
	⁷⁴ Ge ²⁸⁺	365	45	110	a multiturn injected
	⁸⁰ Se ²⁵⁺	480	204	100	M intensity multiplication
	80 Se ³¹⁺	506	50	<1	factor multiturn
	¹⁹⁷ Au ⁵⁰⁺	695	3	3	ECOOL Stacking
		•		:	$M \le 10$

RF acceleration and deceleration

frequency range: 0.5-7 MHz only with magnetization: factor \approx 7 I_{mag}=0-150 A rf voltage: max 5 kV rf power: max 10 kW ferrite: Philips FXC 8C12 ferrite size: 498x270x25 mm³ number of ferrites: 20 cooling: 21 water cooled Cu disks

quadrupole

- magnetization of the ferrites
- decoupling of rf field and magnetization field

Acceleration tests with ¹²C⁶⁺ ions

energy E= 73.3 MeV \rightarrow 362 MeV \Leftrightarrow B $\cdot \rho = 0.71$ Tm \rightarrow **1.57** Tm

Mass selective acceleration at the heavy ion storage ring TSR

1.0

ion source produces several heavy **molecular ion species** with relative mass differences of $\Delta m/m=3.7\cdot10^{-4}$ (DCND+,N2D+). with mass selective acceleration separation of the right molecular ion

species, for example DCND⁺

injection energy E=2 MeV $\Delta m/m=3.7 \cdot 10^{-4}$

relation between ion mass and Schottky $\frac{\Delta f}{f} = -\frac{1}{2} \frac{\Delta m}{m} (1+\alpha)$

Mass selective RF acceleration at the heavy ion storage ring TSR

Internal target experiments at the TSR

target thickness: 5.10¹³ atoms/cm²

Reaction microscope

Lifetimes due to interaction with a internal targets

Calculated ion lifetime for target thickness: 5.10¹³ atoms/cm²

Ion	Energy [MeV]	target	$ au_{sc}$ [s]	τ_{cap} [s]
¹² C ⁶⁺	73	H ₂	1847	4340
¹² C ⁶⁺	73	He	461	236
$^{12}C^{6+}$	73	N_2	38	1.2
$^{12}C^{6+}$	73	Ar	6	0.055
³⁵ Cl ¹⁷⁺	293	H ₂	3200	302
³⁵ Cl ¹⁷⁺	293	He	790	16
³⁵ Cl ¹⁷⁺	293	N_2	64	0.086
³⁵ Cl ¹⁷⁺	293	Ar	10	0.0095

 \Rightarrow possible targets: H₂, He

Filtex experiment storage cell target thickness hydrogen 5.6·10¹³ H/cm²

23 MeV protons
 τ= 60 minutes
 27 MeV He²⁺
 τ=38 minutes

lifetime determined by single scattering

calculated lifetime for p and He²⁺ about factor two higher

Slow extraction

slow extraction process

- ion beam is cooled with electron cooling
- •horizontal working point is shifted close to the third order resonance: $Q_x \rightarrow 2.66...$
- •rf noise is given to a horizontal kicker to blow up the horizontal phase space

Slow Extraction Classical Method

Status of the TSR ring

- •TSR is routinely used at MPI up to the end of 2012
- •end of 2012: shut down of the whole accelerator facility at MPIK, including TSR
- •TSR will kept at MPI until TSR can be reassembled at ISOLDE (scheduled 2015)
- between 2013-2015 some modification at the TSR can be done to fulfill the requirements from CERN
- in 2015: disassembly and reassembly by specialists from MPIK and CERN, ISOLDE
- commissioning of the TSR at ISOLDE can be done in a joined effort with experts from MPIK and CERN, ISOLDE

TSR @ HIE-ISOLDE

HIE-ISOLDE

Approx 3m higher than Isolde hall floor

10m (7m between floor and crane hook)

tilted beam-line coming from the HIE-ISOLDE machine. possible TSR installation above the CERN cable-tunnel. (E. Siesling)

00

TSR@HIE-ISOLDE building

30m

5m

Technical Design Report

Storage Ring at Hie-Isolde

K. Blaum, Y. Blumenfeld,
P. A. Butler, M. Grieser,
Y. Litvinov, R. Raabe,
F. Wenander and Ph. J. Woods
(Eds.)
Published at the European Physic

Published at the European Physical Journal

Volume 207 May 3 2012

A photograph of the ion storage ring TSR at the Max-Planck Institute for Nuclear Physics in Heidelberg. It is proposed to install this ring at the HIE-ISOLDE facility in CERN, thus enabling a variety of unique experiments in nuclear, astro- and atomic physics.