

β-decay of light nuclei

In-flight decay

Summary O

In-flight beta-decay of light exotic nuclei

Riccardo Raabe

Instituut voor Kern- en Stralingsfysica, KU Leuven

TSR@ISOLDE Workshop 29-30 October 2012 CERN

β-decay of light nuclei ●○○○○○

In-flight decay

Summary

Decay as a probe

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle \right|^2 \rho_f$$

- β-decay: interaction well-known
 - \Rightarrow reliable information

Light exotic nuclei

- Large *Q*-values, low binding energy
 - \Rightarrow decay to unbound regions
 - ⇒ emission of particles(light ions, neutrons)
- Q-value: position (and shape) of the populated state
- Decay probability: overlap of states

Riccardo Raabe (IKS, KU Leuven)

β-decay of light nuclei ●○○○○○

In-flight decay

Summary O

Decay as a probe

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle \right|^2 \rho_f$$

- β-decay: interaction well-known
 - \Rightarrow reliable information

Light exotic nuclei

- Large *Q*-values, low binding energy
 - \Rightarrow decay to unbound regions
 - ⇒ emission of particles(light ions, neutrons)
- Q-value: position (and shape) of the populated state
- Decay probability: overlap of states

Riccardo Raabe (IKS, KU Leuven)

β-decay of light nuclei ●○○○○○

In-flight decay

Summary

Decay as a probe

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle \right|^2 \rho_f$$

- β-decay: interaction well-known
 - \Rightarrow reliable information

Light exotic nuclei

- Large *Q*-values, low binding energy
 - \Rightarrow decay to unbound regions
 - ⇒ emission of particles(light ions, neutrons)
- Q-value: position (and shape) of the populated state
- Decay probability: overlap of states

Riccardo Raabe (IKS, KU Leuven)

β-decay of light nuclei ●○○○○○

In-flight decay

Summary

Decay as a probe

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle \right|^2 \rho_f$$

- β-decay: interaction well-known
 - \Rightarrow reliable information

Light exotic nuclei

- Large *Q*-values, low binding energy
 - \Rightarrow decay to unbound regions
 - ⇒ emission of particles(light ions, neutrons)
- Q-value: position (and shape) of the populated state
- Decay probability: overlap of states

β-decay of light nuclei ●○○○○○

In-flight decay

Summary

Decay as a probe

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle \right|^2 \rho_f$$

- β-decay: interaction well-known
 - \Rightarrow reliable information

- Poor overlap
 ⇒ decreased decay probability
- Patterns: decay of the halo (cluster)
- Contribution of different regions of the wave function: cancellation

β-decay of light nuclei ●○○○○○

In-flight decay

Summary

Decay as a probe

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle \right|^2 \rho_f$$

- β-decay: interaction well-known
 - \Rightarrow reliable information

- Poor overlap
 ⇒ decreased decay probability
- Patterns: decay of the halo (cluster)
- Contribution of different regions of the wave function: cancellation

β-decay of light nuclei ●00000

In-flight decay

Summary O

Decay as a probe

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle \right|^2 \rho_f$$

T. Nilsson et al., Hyperfine Interactions 129 (2000) 67

- β-decay: interaction well-known
 - \Rightarrow reliable information

- Poor overlap
 ⇒ decreased decay probability
- Patterns: decay of the halo (cluster)
- Contribution of different regions of the wave function: cancellation

β-decay of light nuclei ●○○○○○

In-flight decay

Summary

Decay as a probe

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| \langle f | H' | i \rangle \right|^2 \rho_f$$

E.M. Tursunov et al., PRC 73 (2006) 014303

- β-decay: interaction well-known
 - \Rightarrow reliable information

- Poor overlap
 ⇒ decreased decay probability
- Patterns: decay of the halo (cluster)
- Contribution of different regions of the wave function: cancellation

In-flight decay

How to measure

Accurate measurements of

- Branching ratios (often small!)
 ⇒ channel identification
 ⇒ efficiency
- Energy emitted particles
 ⇒ low thresholds
 ⇒ resolution
- Spatial correlations

In-flight decay 00000

How to measure

Accurate measurements of

- Branching ratios (often small!) \Rightarrow channel identification \Rightarrow efficiency
- Energy emitted particles \Rightarrow low thresholds \Rightarrow resolution
- Spatial correlations

β-decay of light nuclei ●●●○○○

In-flight decay

Summary

How to measure

Deposition on a tape or thin foil

- Detectors placed around
 - Particle identification
 - Spatial correlations
 - 😕 Efficiency, normalisation
 - 😕 High threshold
 - 😕 β background
- Magnetic fields
 ③ β background

O. Kirsebom, PhD thesis (Aarhus University, 2010)

K. Riisager et al., PLB 235 (1990) 30

Riccardo Raabe (IKS, KU Leuven)

β-decay of light nuclei ●●●○○○

In-flight decay

Summary

How to measure

Deposition on a tape or thin foil

- Detectors placed around
 - Particle identification
 - Spatial correlations
 - 😕 Efficiency, normalisation
 - 😕 High threshold
 - 😕 β background
- Magnetic fields

🙂 β background

O. Kirsebom, PhD thesis (Aarhus University, 2010)

K. Riisager et al., PLB 235 (1990) 30

β-decay of light nuclei ●●●●○○

In-flight decay

Summary

How to measure

Implantation in an active volume

- TPC's:
 - Particle identification
 - Spatial correlations
 - 🙂 β background
 - 🙂 Low thresholds
 - 😕 Slow
- Strip detectors
 - Efficiency, normalisation
 - Correlation between motherand daughter-decays
 - \odot Particle id, β background

K. Miernik et al., NIMA 581 (2007) 194

β-decay of light nuclei ●●●●○○

In-flight decay

Summary O

How to measure

Implantation in an active volume

• TPC's:

- Particle identification
- Spatial correlations
- 🙂 β background
- 🙂 Low thresholds
- 😕 Slow
- Strip detectors
 - 🙂 Efficiency, normalisation
 - Correlation between motherand daughter-decays
 - 😕 Particle id, β background

D. Smirnov et al., NIM A 547 (2005) 480 J. Büscher et al., NIM B 266 (2008) 4652

16×16 mm², 78 μm thick 48+48 strips, 300 μm wide, 2304 pixels

Where can we improve?

• Small decay channel ($\approx 10^{-6}$) into $\alpha + d$

• Branching ratio:

 $1.65(10) \times 10^{-6} (E_{c.m.} > 500 \text{ keV})$

β-decay of light nuclei

In-flight decay

Summary

Where can we improve?

K. Riisager, NPA 616 (1997) 169c

D. Baye, E.M. Tursunov, and P. Descouvemont, PRC 74 (2006) 064302 M.V. Zhukov et al., PRC 52 (1995) 2461 E.M. Tursunov, D. Baye, and P. Descouvemont, IJMPE 20 (2011) 803

• Branching ratio:

1.30(13) × **10**⁻⁴ (*E*_{c.m.} > 200 keV)

How to access lower energies?

β-decay of light nuclei

- Decay at rest:
 Only energy of the decay is available
- Decay in flight:
 Use the momentum of the beam
 Emission in a narrow cone

Summary

O

In-flight decay

0000

 In the ring: Detection in annular arrays or after a bend Identification through Δ*E*-*E*

Riccardo Raabe (IKS, KU Leuven)

How to access lower energies?

β-decay of light nuclei

- Decay at rest:
 Only energy of the decay is available
- Decay in flight:
 Use the momentum of the beam
 Emission in a narrow cone

Summary

Ο

In-flight decay

0000

 In the ring: Detection in annular arrays or after a bend Identification through ΔE-E

Riccardo Raabe (IKS, KU Leuven)

Example I – deuteron-emission decay of ⁶He

In-flight decay

 Branching ratio relates to details of wave function at large distances (⇒ halo)

β-decay of light nuclei

- Cone α -particles ($E \approx 40 \text{ MeV}$): $E_{c.m.} \approx 500 \text{ keV} \implies 3.7^{\circ}$ $E_{c.m.} \approx 100 \text{ keV} \implies 1.6^{\circ} (10 \text{ cm at } 3.5 \text{ m})$
- $B\rho(^{6}\text{He}) = 1.37 \text{ Tm}, B\rho(^{4}\text{He}) \approx 0.9 \text{ Tm}$
- Efficiency: a few percent, possibly 10%-20%
- $T_{1/2} = 800 \text{ ms} \Rightarrow \text{injection in ring for 1s}$ (each proton pulse)
- Intensity $10^4 \text{ pps} \Rightarrow 1 \text{ event} / 5 \text{ h}$

KU LEUVEN

Summary

β-decay of light nuclei

In-flight decay

Example II – deuteron-emission decay of ⁸He

- 84% β-γ followed by 2-α emission
 1% triton emission
- Deuteron emission Q-value: 870 keV
- Cone ⁶He-particles ($E \approx 42 \text{ MeV}$): $E_{c.m.} \approx 500 \text{ keV} \implies 3.1^{\circ}$ $E_{c.m.} \approx 100 \text{ keV} \implies 1.4^{\circ}$ (10 cm at 4 m)
- $B\rho(^{8}\text{He}) = 1.53 \text{ Tm}, B\rho(^{6}\text{He}) \approx 1.1 \text{ Tm}$
- $T_{1/2} = 120 \text{ ms} \Rightarrow \text{injection each proton pulse}$
- Intensity 10² pps (?) but B.R. larger than ⁶He
- \Rightarrow similar rates as on ⁶He case

β-decay of light nuclei

In-flight decay ●●●○○

Example II – deuteron-emission decay of ⁸He

- 84% β-γ followed by 2-α emission
 1% triton emission
- Deuteron emission Q-value: 870 keV
- Cone ⁶He-particles ($E \approx 42 \text{ MeV}$): $E_{c.m.} \approx 500 \text{ keV} \implies 3.1^{\circ}$ $E_{c.m.} \approx 100 \text{ keV} \implies 1.4^{\circ}$ (10 cm at 4 m)
- $B\rho(^{8}\text{He}) = 1.53 \text{ Tm}, B\rho(^{6}\text{He}) \approx 1.1 \text{ Tm}$
- $T_{1/2} = 120 \text{ ms} \Rightarrow \text{injection each proton pulse}$
- Intensity 10² pps (?) but B.R. larger than ⁶He
- \Rightarrow similar rates as on ⁶He case

KU LEUVENβ-decay of light nucleiIn-flight decaySummary●●●●●●●●●●○○

Example III – proton-emission decay of ¹¹Be

- Proton-emission decay of a neutron-rich nucleus!
- *Q*-value: 281 keV
- ¹⁰Be-particles: *E* ≈ 100 MeV
 0.5° (10 cm at 10 m) @ E_{c.m.}≈ 100 keV
- $B\rho(^{11}Be) = 1.26 \text{ Tm}, B\rho(^{10}Be) \approx 1.1 \text{ Tm}$
- $T_{1/2} = 13.8 \text{ s} \Rightarrow$ injection till saturation (a few 10⁷ ions circulating)

\Rightarrow 1 event / hour

 \Rightarrow 1 event / hour

Riccardo Raabe (IKS, KU Leuven)

β-decay of light nuclei

Summary

Example IV – α -emission decay of ¹⁶N

- ${}^{16}N \rightarrow {}^{16}O \rightarrow {}^{12}C + \alpha$ E1 contribution to ${}^{12}C(\alpha,\gamma){}^{16}O$ B.R. known to 10%
- ¹²C-particles: *E* ≈ 120 MeV
 0.8° (10 cm at 7 m) @ E_{c.m.}≈ 100 keV
- $B\rho(^{16}N) = 1.04 \text{ Tm}, B\rho(^{12}C) \approx 0.9 \text{ Tm}$
- T_{1/2} = 7.1 s ⇒ injection till saturation (a few 10⁴ ions circulating)
- 10¹¹ ions needed
 → needs higher ¹⁶N intensity

Summary

Rich information from β -decay!

- Interaction well-known ⇒ structure models can be tested directly Nuclear halos, clusters, new decay modes
- Storage and in-flight decay: access to the lowest c.m. energies

Possibilities for the TSR

- Deuteron-emission decay of ^{6,8}He
- Proton-emission decay of ¹¹Be
- Alpha-emission decay of 16N (present limit ≈400 keV above threshold)

• Focus on events at low E_{c.m.}

• Complementary to other methods measuring absolute B.R.

Summary

Rich information from β -decay!

- Interaction well-known ⇒ structure models can be tested directly Nuclear halos, clusters, new decay modes
- Storage and in-flight decay: access to the lowest c.m. energies

Possibilities for the TSR

- Deuteron-emission decay of ^{6,8}He
- Proton-emission decay of ¹¹Be
- Alpha-emission decay of 16N (present limit ≈400 keV above threshold)

• Focus on events at low E_{c.m.}

• Complementary to other methods measuring absolute B.R.

