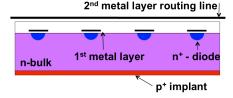
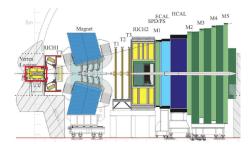
Radiation damage effects in the LHCb Vertex Locator

Jon Harrison on behalf of the LHCb VELO group

21st RD50 Workshop CERN, 14th - 16th November, 2012

Jon Harrison (University of Manchester)

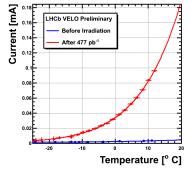

інсь


Radiation damage in the LHCb VELO

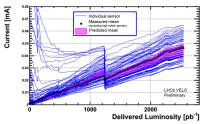
RD50 Workshop, 14th Nov 1 / 28

The LHCb Vertex Locator

- The LHCb Vertex Locator (VELO) is the closest sub detector to the beam at the LHC → 8 mm at closest point
- Two retractable halves
- 84 sensors, of which 82 are n⁺-on-n and 2 are n⁺-on-p
- 42 R sensors and 42 ϕ sensors



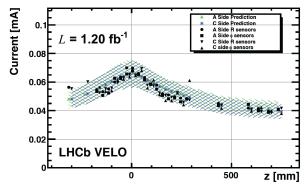
- 300 μm silicon at -8°C
- Oxygenated
- Double metal layer
- Designed to cope with LHC radiation environment ~6 fb⁻¹ delivered luminosity


Effective bandgap and current increase

 Measure the effective band gap from exponential fit to leakage currents:

 $\rm E_g = 1.16 \pm 0.06$ (eV) at 2.7 fb^{-1} c.f. 1.21 eV from A. Chilingarov

 Increase in bulk current with fluence proportional to delivered integrated luminosity:



All sensors at 150 V and -8° C

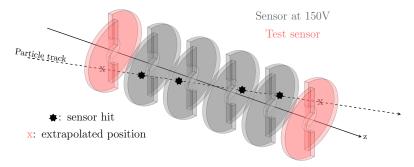
- Good agreement with MC predictions
 - ightarrow also seen in 2012 at 8 TeV

Fluence predictions

Compare current measurements to MC predictions sensor by sensor:

Good agreement further justifies our understanding of the fluences received by the VELO \rightarrow use MC predicted fluences in several of the following studies

Effective Depletion Voltage


EDV

Effective depletion voltage 1

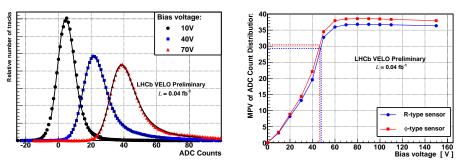
 Depletion voltage of sensors measured during assembly using C-V scans

EDV

 Cannot be repeated after installation so use dedicated data taking periods every 3-4 months

Method: extrapolate tracks to test sensor and determine amount of charge collected

Jon Harrison (University of Manchester)

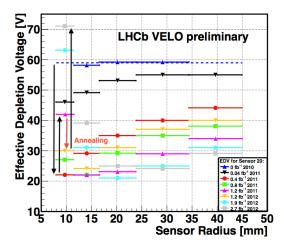

Effective depletion voltage 2

Pattern varied to collect data at each sensor across a range of voltages

EDV

Fit MPV of ADC distribution...

...and plot vs voltage

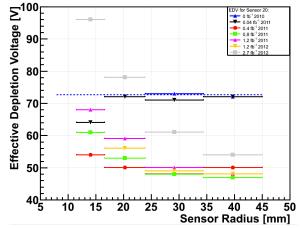


 Effective Depletion Voltage (EDV) is defined as the voltage at which the MPV is 80% of the maximum

Jon Harrison (University of Manchester)

EDV vs fluence 1

Plot change in EDV for a single n⁺-on-n sensor in bins of radius for different delivered luminosities:


Conclusions:

- EDV decreases with fluence before type-inversion
- EDV increases with fluence after type-inversion
- Type-inversion starts in inner radial regions

EDV vs fluence 2

Change in EDV for a single n⁺-on-p sensor in bins of radius for different delivered luminosities:

EDV

Conclusions:

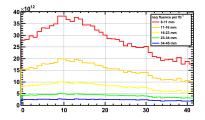
- EDV decreases with fluence initially as in n⁺-on-n type
- EDV then increases with fluence rapidly
- Minimum EDV point is much higher ${\sim}45V$

EDV vs fluence 3

Plot change in EDV versus fluence for all sensors:

EDV

10/28

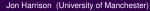

EDV extrapolations: sensor by sensor

EDV

 Fit to EDV vs fluence plot and extrapolate results to 3.6 fb⁻¹

Sensor	Max EDV at 3.5ifb			
0	241			
4	122			
5	128			
6	127			
7	131			
8	134			
9	145			
10	145			
11	140			
12	138			
13	143			
14	141			
15	132			
16	132			
17	130			
18	125			
19	122			

120-129V, 130-139V, 140-149V



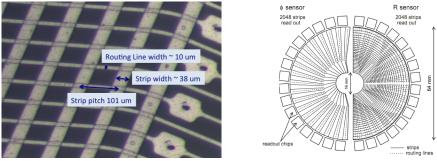
Predicted fluence vs sensor number

- Highest EDVs are centred around the interaction point
- EDV approaching current operating voltage (150 V)
 → change before the end of the year

Cluster Finding Efficiency

CFE

Cluster Finding Efficiency

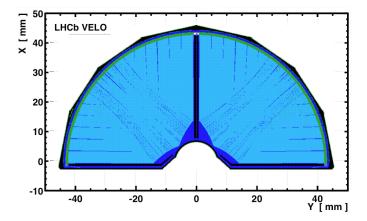

 A key aspect of VELO physics performance is the ability to efficiently find and reconstruct clusters

CFE

- A cluster is defined as one or more adjacent silicon strips with charge above a particular threshold
- Cluster Finding Efficiency (CFE) is therefore the percentage of tracks at a particular point in the sensor where a cluster is obtained at the track extrapolation point
- Typically measured using regular dedicated scans, but can also be derived from physics data

Second metal layer

1st metal layer capacitively couples to strips
2nd metal layer carries signal to read-out electronics

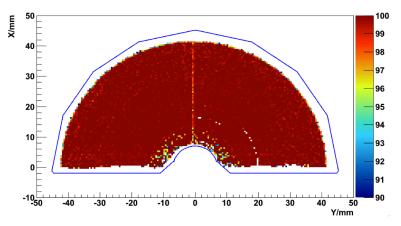


- Routing lines are perpendicular to strips in R-sensors and parallel to strips in φ-sensors
- Charge capacitively couples to routing lines in R-sensors and reduces CFE

CFE

2D CFE plots

• Map of routing lines in an R-type sensor:

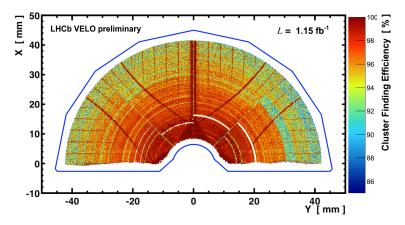

CFE

• Light parts indicate absence of routing lines

2D CFE plots

CFE

• Plot CFE in x and y bins:

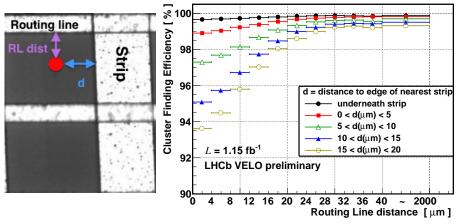

Early March 2011, after 40 pb⁻¹
 → CFE is ~ 100% in all regions of sensor

Jon Harrison (University of Manchester)

2D CFE plots

• Repeat after 1.15 fb⁻¹ (Oct 2011) delivered integrated luminosity:

CFE


CFE drops with fluence, especially in outer radial regionsHigh efficiency in absence of routing lines

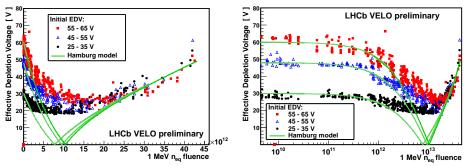
Jon Harrison (University of Manchester)

Routing line and strip distance dependence

CFE

 CFE is worst in regions far away from strips and close to routing lines (shown here for 2011 data - known to be the same in 2012):

No measurable effect on tracking efficiency

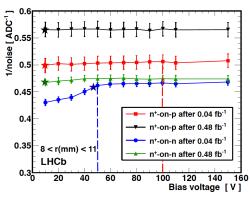

Further work

Other studies

Hamburg Model comparison

• Compare results to Hamburg Model (for 2011 data only):

Further work

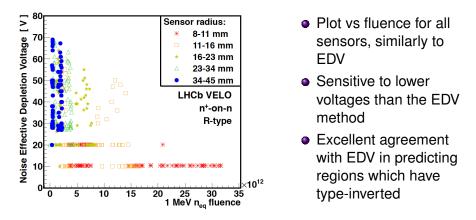


- Good agreement at low and high fluences
- Discrepancy around type-inversion point due to finite charge collection time
- Important to predict evolution of depletion voltage for future operations

Further work

Noise vs Voltage 1

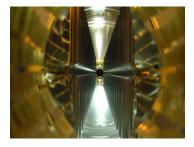
Can also take regular noise scans without requiring beam



- Under-depleted sensors have higher capacitance
- Depleted sensors have lower capacitance due to depleted region
- Noise proportional to capacitance
 - \rightarrow noise decreases as sensor approaches type inversion point
- Not applicable for n⁺-on-p and type-inverted sensors due to direction of growth of depleted region
- Dashed lines represent initial depletion voltage

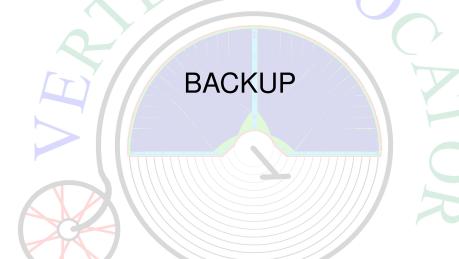
Jon Harrison (University of Manchester)

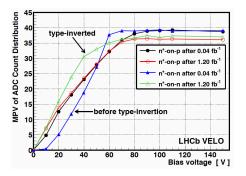
Noise vs Voltage 2


Define Noise Effective Depletion Voltage (NEDV) as voltage at which 1/noise is 80% of maximum

NEDV indicated by stars on previous slide for illustration \rightarrow good agreement with initial depletion voltage

Jon Harrison (University of Manchester)


Summary



- Radiation damage effects are studied with several methods
- Change of depletion voltage with fluence agrees well with expectations
- Large CFE decrease due to second metal layer effect observed in some regions of R-sensors
- Currently no significant effect on physics performance
- Studies ongoing and in the process of moving towards publication

MPV vs voltage

- For n⁺-on-n depletion region grows from the back plane of the sensor
- For n⁺-on-p depletion and n⁺-on-n after depletion region grows from the strip side of the sensor
- Accounts for the different shape of the curves

- $\bullet\,$ Observe a minimum EDV of \sim 18 V
- Due to the slow drift of the charge in the low electric field combined with the fast shaping of the Beetle chip
- Electron drift speed: \sim 9 $\mu m/ns$ at 18 V, Beetle shaping time: \sim 20ns
 - \rightarrow within shaping time only 60% of electrons reach electrode (+ a small amount from other contributions)
- Require 80% of signal to measure EDV

Backup

Further information on effective band gap

- $\bullet\,$ Follow up article on E_g from: A. Chilingarov 2
- $\bullet\,$ Do not expect a direct comparison between E_g quoted within and the experimentally determined value

Backup

CFE vs voltage

Table 4: The CFE change, $\Delta CFE_v = CFE_{V=150} - CFE_{V=80},$ averaged over all R-type sensors.

Delivered	$\Delta CFE_v = CFE_{V=150} - CFE_{V=80} \ (\%)$					
Luminosity	8-11mm	11-16mm	16-23mm	23-34mm	34-42mm	
0.426 fb^{-1}	-0.09 ± 0.09	-0.19 ± 0.02	-0.30 ± 0.01	-0.76 ± 0.03	-1.84 ± 0.19	
1.220 fb^{-1}	-0.03 ± 0.28	-0.06 ± 0.02	-0.21 ± 0.02	-0.57 ± 0.04	-1.15 ± 0.40	
$1.912 \ {\rm fb^{-1}}$	0.12 ± 0.11	0.15 ± 0.06	-0.15 ± 0.05	-0.85 ± 0.11	-1.49 ± 0.34	

- CFE decrease has been found to depend on voltage
- Therefore any increase to account for increasing depletion voltages should be carefully considered
- However dependence appears to disappear for n⁺-on-p sensors and n⁺-on-n sensors after type-inversion