Characterization of thin high irradiated n-in-p planar pixel sensors

Stefano Terzo^a

L. Andricek a,b , A. Macchiolo a , H.-G. Moser a,b , R. Nisius a , R.-H. Richter a,b and P. Weigell a

 a Max-Planck-Institut für Physik & b Max-Planck-Institut Halbleiterlabor
München

21st RD50 Workshop, CERN, Geneve 14th - 16th November 2012

N-in-p planar pixel samples

CiS samples:

FE-I3 modules 285 $\mu\mathrm{m}$ thick

Irradiations:

 $\rightarrow \ 1{\times}10^{16} \rm n_{eq}/cm^2 \ in \ Lubljana \\ (reactor \ neutrons)$

MPI/HLL samples:

- FE-I3 modules 75μm thick (SLID interconnected)
- FE-I4 modules 150 $\mu\mathrm{m}$ thick

- $\rightarrow \ 1{\times}10^{16} \rm n_{eq}/cm^2 \ in \ Lubljana \\ (reactor \ neutrons)$
- $\rightarrow~4\times10^{15} \rm n_{eq}/cm^2$ in Los Alamos (800MeV protons)

 Implant backside on sensor Bond sensor wafer to handle wafer

Thin sensor side to desired thickness ____

Process on top side

Structure resist, etch backside up to oxide/implant

Full module concept

the present ATLAS module design

- through a 3D integration assembly:
 - thin sensors (75-150 μ m)
 - Solid Liquid InterDiffusion (SLID) interconnection
 - ightharpoonup present chips thinned up to 200 $\mu {
 m m}$
 - ▶ Through Silicon Vias (TSV) to bring the signal directly to the backside passing through the chip (thinned to $60\mu m$)
- to active edge sensors (see Anna Macchiolo's talk)

Full module concept

the present ATLAS module design

- through a 3D integration assembly:
 - thin sensors (75-150 μ m)
 - ► Solid Liquid InterDiffusion (SLID) interconnection
 - ightharpoonup present chips thinned up to 200 $\mu \mathrm{m}$
 - ▶ Through Silicon Vias (TSV) to bring the signal directly to the backside passing through the chip (thinned to $60\mu m$)
- to active edge sensors (see Anna Macchiolo's talk)

Characterization setup in laboratory

- ⁹⁰Sr beta source
- external trigger via scintillator
- from 20°C to -50°C cooling
- ATLAS USBPix read-out system

Plastic support

Pixel modules are wire-bonded to detector boards designed by the University of Bonn for FE-I3 and FE-I4

SLID modules $75\mu\mathrm{m}$ thick

- Good Charge Collection Efficiency after $10^{16} n_{\rm eq}/{\rm cm}^2$
- SLID interconnection is radiation hard (the number of unconnected channels is stable)

CC for FE-I3 modules 285 μm thick

MPP/HLL design produced by CiS irradiated up to $10^{16} {
m n}_{
m eq}/{
m cm}^2$

- tested up to 1000V
- ▶ threshold: 3200e

Test-beam results

- Test-beams with the EUDET telescope:
 - at SpS CERN with 120GeV pions
 - ▶ at DESY with electrons up to 6GeV
 - cooling with dry ice up to \sim -45 $^{\circ}$ C

Many thanks to the PPS test-beam crew:

S. Altenheiner, M. Backhaus, M. Bomben, K. Dette, M. Ellenburg, D. Forshaw, C. Gallrapp, M. George, I. Gregor, J. Janssen, J. Jentzsch, R. Klingenberg, A. Kravchenko, T. Kubota, A. Macchiolo, R. Plümer, R. Nagai, B. Rastic, I. Rubinsky, A. Rummler, Y. Takubo, S. Terzo, K. Toms, R. Wang, Y. Unno, P. Weigell, J. Weingarten.

Efficiency for FE-I3 modules 285 $\mu \mathrm{m}$ thick

Test-beam at SpS, CERN with the EUDET telescope:

- Pions 120GeV
- perpendicular beam incidence
- bias voltage: 600V
- ► threshold: 2ke (MPV~5.5ke)

- **97.2**% hit efficiency at $10^{16} n_{eq}/cm^2$ (98.1% in the inner region)
 - Main loss due to punch through and bias rail
 - efficiency loss also for charge sharing in the corners

FE-I4 modules $150 \mu \mathrm{m}$ thick

- designed and produced by MPP/HLL
 - ▶ 6 inches wafers with ATLAS FE-I4 chips (50µm×250µm)
 - interconnected with bump-bonding at IZM
- irradiated up to $4\times10^{15}{
 m n_{eq}/cm^2}$
- Results from lab and test-beam measurements

not irradiated show excellent performances: $\epsilon > 99.7\%$

Efficiency: FE-I4 modules $150 \mu m$ thick

Test-beam measurement at perpendicular incidence:

Pixel cell efficiency: FE-I4 modules $150 \mu \mathrm{m}$ thick

- irradiated to $4\times10^{15} n_{eq}/cm^2$ in Los Alamos
- perpendicular beam incidence
- threshold: 1.6ke (MPV~9.5ke)
- **97.7**% hit efficiency at 690V (\sim 99.5% in the central region)

Pixel cell efficiency: FE-I4 modules $150\mu\mathrm{m}$ thick (tilted)

- irradiated to $4\times10^{15} n_{\rm eq}/{\rm cm}^2$ in Los Alamos
- 15° tilted in ϕ
- threshold: 1.6ke (MPV~9.5ke)
- **98.2**% hit efficiency at 650V (\sim 99.4% in the central region)

Modules charge sharing

 ϕ =15 $^{\circ}$ 650V

Modules charge sharing: cluster properties

slightly increase of charge sharing with the voltage

 ϕ =15° \rightarrow 2× more cluster of size 2

Comparison with laboratory measurements

Collected charge is in agreement between:
TB (120GeV pions) and lab measurements (90 Sr)

Small difference due to the dependence of e-h pairs generated from the particle energy (\sim 10 e/ μ m)

Thickness comparison

 $150 \mu \mathrm{m}$ thick sensors show higher charge up to a fluence of ϕ =4-5 \times 10¹⁵ $\mathrm{n_{eq}/cm^2}$ charge collected by thin and thick sensors tend to equalize at high fluences

(due to trapping)

Conclusions and outlook

- demonstrated the feasibility of employing n-in-p pixel sensors of standard thickness up to $10^{16} \rm n_{eq}/cm^2$
 - in particular suited for the outer pixel layer of Phase II
- very good performances of thin $150\mu m$ sensors suited for the internal or intermediate layers up to $4\times10^{15} n_{eg}/cm^2$

What's next:

- ▶ FE-I4 150μm:
 - paraylene coating (allows for high voltages without discharges)
 - ▶ irradiation up to $2 \times 10^{16} n_{eq}/cm^2$ in Lubljana and Los Alamos
- FE-I3 285 $\mu\mathrm{m}$ and SLID 75 $\mu\mathrm{m}$:
 - ► irradiation to 2×10¹⁶ n_{eq}/cm² in Lubljana
 - ...more test-beams in DESY (no beam at SpS next year)

Backup slides

SLID interconnection technique

An alternative chip connection to bump bonding

Pros:

- high T_{melt} allows for vertical integration smaller pitches and arbitrary geometries
- wafer to wafer and chip to wafer possible
- cost effective: less process steps.

Cons:

- planarity of $1\mu m$ needed
- no rework possible
- homogeneous pressure needed

