Irradiation Scanning System

suitable for silicon & passive materials (with cooling)

H Marin-Reyes **R** French P Hodgson


P Dervan G. Casse

J A Wilson D. Parker

21st RD50 Workshop **CERN 16th Nov 2012**

Richard French

- Irradiation using a MC40 Cyclotron
- Summary of the irradiation on the 14/06/12
- Online dosimetry Foils and Sensors
- Alibava Setup and Charge Collection
- Cooling performance
- Scanning Equipment + New Beam Area
- Irradiation Path Profiles

Irradiation using a MC40 Cyclotron

Birmingham University, UK

WITCH END RUN LEF

ISTANCE MINIMUM FOR SCANNING LEFT

History & Details

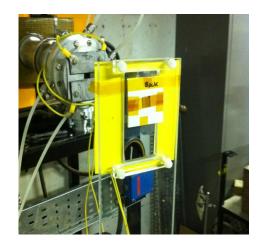
- Scanditronix MC40 variable energy cyclotron
- Maximum energies:
 - 40 MeV (protons or alphas)
 - 20 MeV (deuterons)
 - 53 MeV (3He)
- Produces tracers for the Positron Imaging Centre; related research projects; 81Rb production for sale to hospitals

Scanning system + Thermal Chamber

- Fully portable plug & play scanning system
- Thermal chamber using similar principle to PS irradiation facility CERN (IRRAD 5)
 - -22°C minimum operating temp
 - ~ 480W heat load removal (@ -20°C).
 - Recirculate cold air (forced convection)
- Readout and control system using COTS FPGA based technology
- Networked readout allowing remote access for data analysis and real-time sample performance

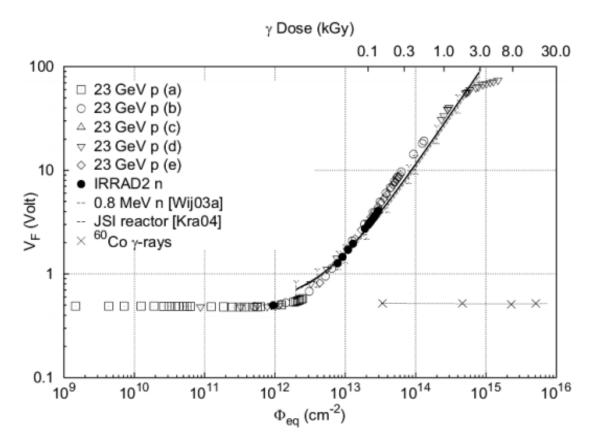
Current status of facility

- 2011 Irradiations performed using 26MeV protons with a beam current of 0.4uA
- Dedicated beam line for higher beam currents of >0.8uA suited to detector activities ready in November 2012
- New shielding final installation Oct 2012 to allow for high energy running (custom high density concrete blocks)
- PIN Diode/ Titanium activation foil measurements made & calibrated ok
- Fibre optical ribbon jacket Irradiation carried out for ATLAS Upgrade 2012
- Possibility of linking to EU AIDA programme for user access to this facility 2013 onwards



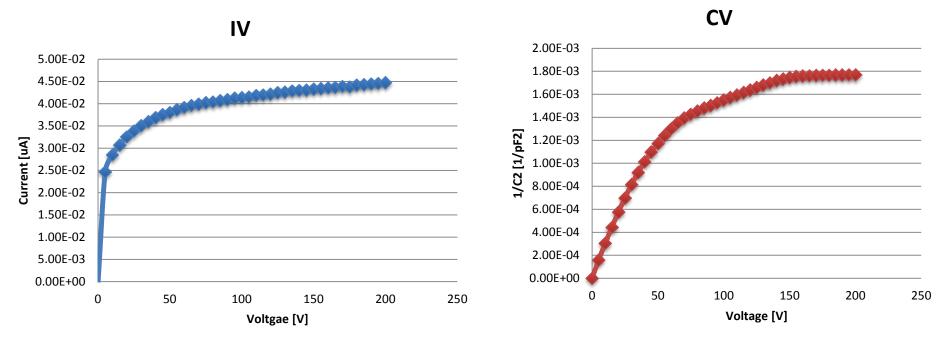
Summary of the irradiation on 14/06/11

- **Beam Line**
- Run at a current of 0.5µA for 800 seconds to reach 2.5 \times 10^{15} n_{eq}/cm^2
- The faraday cup was also used to give an end time (667 units)
- Both the time estimate and the faraday cup agreed with each other to within 1 second at the end of the run.


Beam spot

• Sensors mounted in the beam line

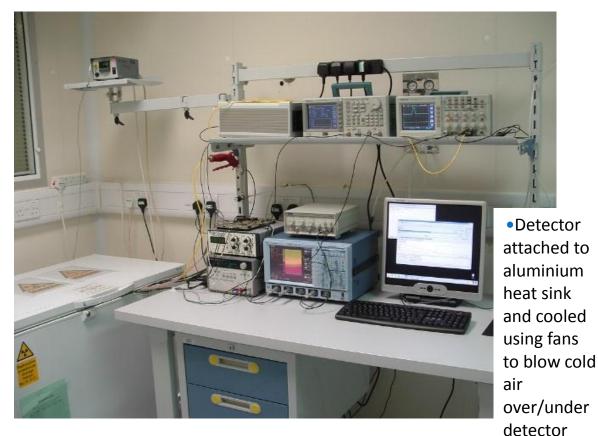
Online dosimetry


• BPW32 measurements (F. Ravotti's PhD Thesis)

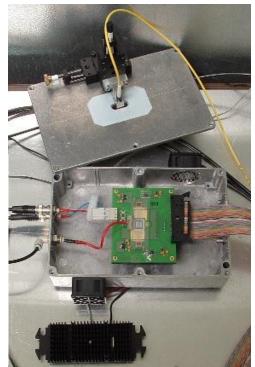
Foils and Sensors

Four 300 μ m thick ATLAS07 mini sensors (1 × 1cm2) were placed in the beam

- VPX73814-W148 BZ5-P11 (Back)
- VPX73814-W146 BZ6-P12
- VPX73814-W146 BZ5-P23
- VPX73814-W148 BZ6-P24 (Front)

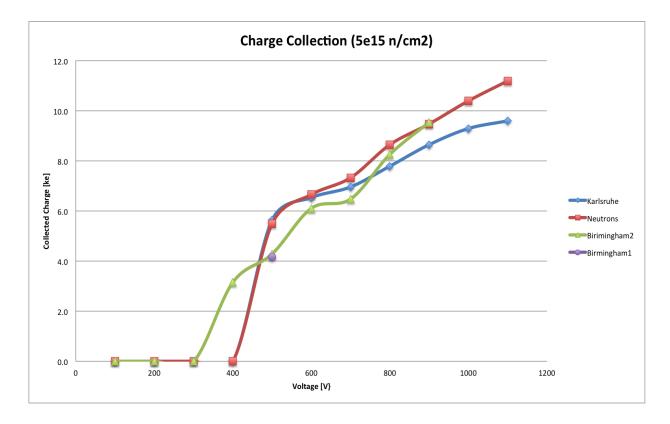


Example of an IV measurement, pre-irradiation
Example of a CV curve, pre-irradiation



Alibava Setup

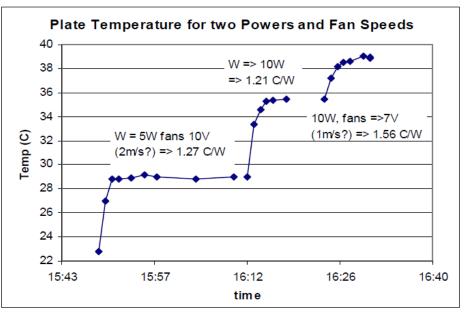
Analogue readout based on the Beetle V1.5 chip(40 MHz readout speed)


 Signal generation with 370
Mbq 90Sr fast beta source for charge collection & sharing studies

- Scintilator/s placed under/ontop daughter board for single or coincidence trigger
- Cooling down to 45 deg.C (ElCold EL11LT), 1deg.C hysteresis loop

Charge Collection

• CCE measurements

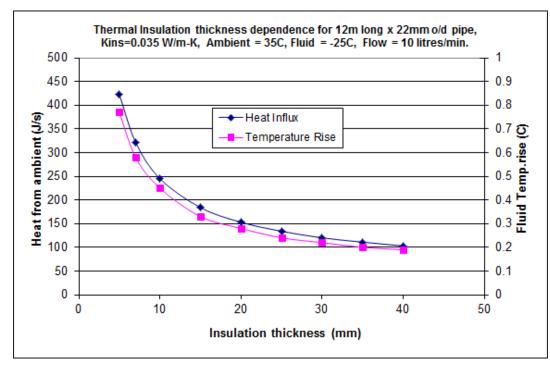

Chamber cooling performance

Dummy silicon heater tests using 100mm² Aluminium plates with Kapton film heaters

- Chiller cooling the heated plate gives :
- 10W Sensor at -7C + Integrated hybrid => need to cool gas (N₂)to -22C
- Chiller cooling heated plate gives DT ~ 1.5C/W => 1W sensor at -7C => cool the N₂ to -8.5 C
- 3x ATLAS Upgrade 250nm strip sensors 100mm² + hybrids, 2 fans at 10w, 12m of cooling circuit, 800w chiller power.

Sensors 3 x 1W + Hybrid: 10W Fans: 10W Ambient conduction (DT=35C): ~20W (estd.) => sub-total for HEX: ~30 - 40W (tested - ok! G.Beck et al 2009)

- Conduction through insulation (2 x 6m) ~ 100W
- => total load for circulating chiller to remove ~ =< 150W or 50W per sensor



CONCLUSIONS

- Thermal chamber and chiller have more than enough head room to cool multiple sensors (powered)
- Temperature losses through transfer lines will be a problem if length exceeds 20m, loss per m is more dramatic the longer the length......

Transfer line cooling tests

Thermal chamber to chiller system transfer line insulation performance

- Based on Armacell data & samples
- Chosen 30mm thick for optimal performance
- Box insulation is a Styrofoam sourced from Dow laminated with 0.8mm Aluminium (grounding & shielding) and 0.2mm white Formica (light tight rad hard, dust free

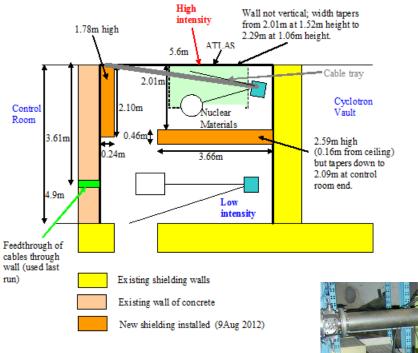

Properties	Values
Material	Foamed nitrile rubber
Max. Surface Temperature	+105°C
Max. Temperature for Flat Surface	+85°C
Min. Surface Temperature	-200°C*
Thermal Conductivity at 0°C	0.034 W/(m · K)
Thermal Conductivity at +20°C	0.036 W/(m · K)
Thermal Conductivity at +40°C	0.038 W/(m · K)

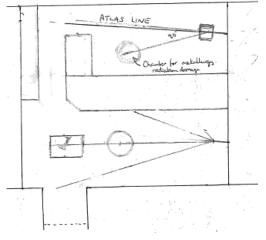

Scanning Table

Pre-configured XY-axis Cartesian Robot System

- It handles payloads up to 60 kg
- Speed: as low as 1 mm/s and as high as 360 mm/s (X-axis)
- Acceleration rates up to 20 m/s²
- Positional Accuracy ±50 μm (X-axis)
- This motion system can execute strokes up to 450 mm in X-axis, and 400 mm in Y-axis
- System driven by NI CompactRIO Real-Time controller and AKD Servo Drives with synchronized multi-axis motion using NI LabVIEW graphical programming.

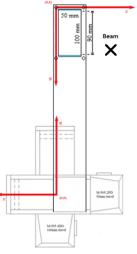
• Overall unit length with a parallel mounted motor is 598mm long to reduce working space

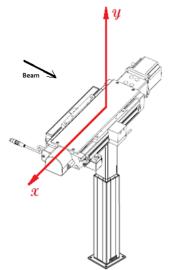



 Motors and cables connect to the scanning table in a straightforward and simple manner.

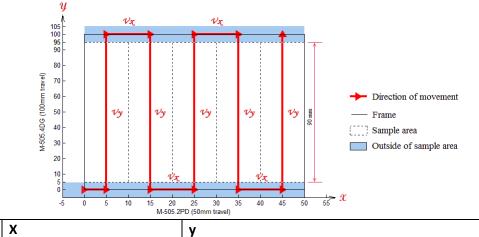
New Beam Area

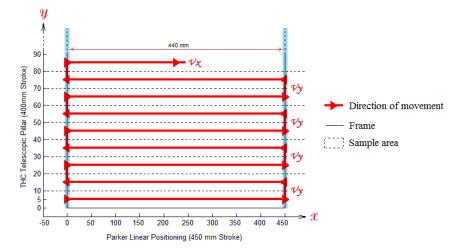
Birmingham University, UK





Irradiation Path Profiles


• Birmingham Irradiation (Nov 2011)


• New XY-axis Cartesian Robot System

	X	Y
Stroke	50mm	100mm
Max. Speed	Variable: 0-15 mm/s	Variable: 0-15 mm/s

	x	У
Stroke	450mm	400mm
Max. Speed	Variable: 0-360 mm/s	Fixed: 15 mm/s

Conclusions

- The Scanditronix MC40 located at Birmingham is easily capable of providing fluences for SLHC type applications
- Has provided successful irradiations of materials (e.g. Fibre Optical cable components – support jackets)
- New high energy beam area nearly ready for operation
- Plug and play portable irradiation system design that is easy to reproduce
- Dosimetry and activation measurements now fully tested and calibrated
- Detector test facilities proven and established
- Cooling system testing shows enough headroom to prevent annealing of sensors
- Final construction 27th Nov 2012 (Additional shielding)

THANK YOU