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Motivation 

  To predict signal changes and to foresee possible 

modifications of the detector performance 

 

  Comparison of variations of carrier drift and recombination 

characteristics during neutron and proton irradiations 
 



Neutron source at Louvain la Neuve University 

The high flux neutron line is located at the 

Louvain la Neuve -Cyclotron. It uses a primary 

50 MeV deuteron beam that is sent on a thin 

beryllium target. The high cross section 

reaction 9Be(d,n)10B produces the high flux 

neutron beam. 

To keep the gamma and charged particle contamination as 

low as possible filters are placed outside the target box and 

fixed to the box window, made of three layers: 1 cm thick 

polyethylene, 1 mm Cadmium and 1 mm Lead. The filter 

also removes from the beam the low energy neutrons. 

The energy spectrum of the out-

coming neutron beam is dominated 

by a peak in the region of 25 MeV. 

Neutron spatial distribution variation with distance from the target 



MW-PCT measurement setups 

Sketch of experiments 
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Comparison of results of the in situ changes of  

recombination lifetime during 8 MeV protons, nuclear reactor  

and  spallator 25 MeV neutrons irradiation 
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 Okmetic MCZ<100> 1kOhm·cm  300 m

 MWR,  CIS  8556- 14 wafers 1 -  63  passivated 

 CIS  8556- 14 wafers measured by DG technique

 CIS 8556-01 diodes neutron irradiated
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MCZ Si wafer

8 MeV protons at 285K :

varying current by steps 



Setup for implementation of BELIV technique 
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Reverse bias 
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Comparison of results of changes of the barrier 

capacitance charging and thermal-generation current 

changes under nuclear reactor  and  spallator 25 MeV 

neutrons irradiation, measured in situ by BELIV technique  
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ICDC- induced surface charge domain drift currents:  measurement setup 
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dy
dyv )(

j(t)[q0exp(-t/R)/dr]+[q0exp(-t/R)/R]+[em0dexp(-t/g)/2g].  

U>UFD 

dy/dt - [m
-1(t) +q

-1(t) -Ndef
-1] y(t) - [dr

-1-m
-1(t)]= 0, with y(t=0)=y0 and y(t=tdr)=1  

Ndef=0/eNdef ; m(t)=20/em0(1-exp(-t/g)), m(t)=m0(1-exp(-t/g) ; 

 

q(t)=0/[q0exp(-t/R)/d], q(t)=q0exp(-t/R) ; tdrdr=d2/U     

j(t) [q0/dr], if R & g>> dr 



Comparison of results of the on-line changes of the 

ICDC during  8 MeV proton beam  and  spallator 25 MeV 

neutrons irradiation 

8 MeV protons Spallator  neutrons 
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Correlated evolution of the MW-PC, 

 BELIV and ICDC characteristics 
during  spallator neutrons irradiation: 
 

transients registered every 10 ms, - more than 105 on 

each curve;  irradiation -  bunches of 4 ns duration 



Summary 

•Spallator neutron irradiations are extremely useful for in situ experiments, as electrical 
noises are sufficiently small in comparison with those in proton beam chamber. On-line 
experiments are useful to predict detector behavior in operation regime. 

 

 

 

•The observed changes of MW-PC, BELIV and ICDC transients well correlate mutually when 
considered relatively to an increasing fluence value. Thus, MW-PC correlated lifetime 
changes, measured in contact-less and distant manner, calibrated with other parameters is a 
powerful tool for examination in a wide dynamic range of carrier lifetimes, modified by 
radiation defects. Increased recombination rate in the heavily irradiated detectors may mask 
carrier drift. Thus, carrier recombination lifetime values, measured by MW-PC technique, 
can be employed in prediction of detector performance.  

 

 

•Approach of carrier lifetime values to those of charge drift specific time scale leads to the 
non-operational junction. The observed increase of generation current within BELIV 
transients will cause a considerable increase of detector noise level. 
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Dosimetry using alanine [CH3CH(NH2)COOH –organic acid]  

EPR spectroscopy, - ESR of radiation created free radicals 

Dosimetry is based on the generation of the free radicals within the alanine pellets. Quantification 

of the radicals is implemented by detecting the free electrons using Electron Paramagnetic 

Resonance (EPR) Bruker spectrometer. Alanine dosimeter reader is calibrated to register doses 

between 0.05 kGy (corresponding to neutron fluence of 1012 n/cm2) and 80 kGy (corresponding to 

neutron fluence of 1.8 x 1015 n/cm2). 



Sketch of experiments 
The parallel on-line measurements of MW-PC, BELIV and ICDC characteristics 

have been performed keeping the same experimental conditions  



Sketch of experiments 



Neutron source at Louvain la Neuve University 

Fluence Φ (particles/cm2) is calculated from the integrated current, by 

the following formula: 

 

 

 

 

Fluence (n/cm2) is directly proportional to I, integrated deuteron 

current (expressed in µA x hour), and inverse proportional to the 

distance d between the target and the sample (centimeters). 

Alanine dosimeter reader is calibrated to read doses between 0.05 

kGy (corresponding to neutron fluence of 1012 n/cm2) and 80 kGy 

(corresponding to neutron fluence of 1.8 x 1015 n/cm2). 

The hardness factor is defined as the ratio between the displacement 

damage cross-section for a specific particle energy distribution and 

the displacement damage cross-section of neutron of 1 MeV that has 

a known value of 95 MeV mb. 

Calculation of the equivalence between neutron 

and proton irradiation and between absorbed 

dose (kGy) and fluence (1 MeV eq n/cm2) 

 
Number of neutrons for several energy values and the total 

flux calculation 

 



Neutron source at Louvain la Neuve University 

Equivalence between fluence (particles/cm2) and dose (Gy) 

To evaluate the correspondence between the neutron fluence and the absorbed dose 

in different materials (for our purpose: silicon and alanine) the KERMA values 

were used (sum of the kinetic energies of all the charged ionizing particles 

produced in the interactions: elastic scattering (n,n), inelastic scattering (n,n’γ), or 

(n,2n),(n,p),(n,α)…). 

Neutrons absorbed dose (expressed in Gy) = ∫ Φ(E)K(E)dE (integral over energy 

domain, 5 to 45 MeV); Φ(E) is the energy distribution of the neutron beam, K(E) is 

the KERMA factor of the materialexpressed in fGy m2. 

 

 

 

 

The Φ total as 6.1 x 1011 neutrons/µC*Sr. The result of the integral considering the 

flux values and the KERMA factor is 1.52 fGy m2 . Therefore for Silicon:  

Dose (Gy) = 1.52 (fGy m2) x Φ (n/cm2). 
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Neutron source at Louvain la Neuve University 

The deuteron beam has a time structure made of 4 nanosecond wide bunches with 

a repetition period of about 80 nanoseconds. This time structure is also reflected 

in the secondary neutron beam. 

The absolute neutron flux is estimated from the activation [4] of several metallic 

foils through reactions (Table 1) of known cross-sections (Fig. 2) [5]. 

Table 1: Production reactions,neutron energy range of sensitivity and 
half life [5] of the induced radioactive nuclei. 

Reaction Neutron energy range 

(MeV) 

Half-life T1/2 

      115
In (n,) 

116
In thermal 54.15 min 

      115
In (n,n? ) 

115m
In 1-14 4.49 h 

       27
Al (n,) 

24
Na 7-27 14.96 h 

      58
Ni (n,p) 

58
Co 2-20 70.916 d 

      58
Ni (n,2n) 

57
Ni 12-40 1.5 d 

      59
Co (n,) 

60
Co thermal 5.27 y 

      59
Co (n,p) 

59
Fe 4-30 44.5 d 

      59
Co (n,2n) 

58
Co 14-50 70.916 d 

      59
Co (n,3n) 

57
Co >20 271.77 d 

      93
Nb (n,2n) 

92m
Nb 9-30 10.15 d 

 

The calculated production yield is 6.6 1011 neutrons C-l sr-l. This is compatible with the one measured 

previously by Meulders et al. [7]. The maximum neutron flux achievable in this set-up, at a distance of 

9 cm from the target, is 7.3 1010 neutrons cm-2 s-1. It also means that a fluence equivalent to 10 years of 

LHC operation is reached in 23 minutes. 

     The  measured the dose rate using different methods: 

 a calibrated ionization chamber mounted according to the ICRU-45 protocol [8] with a 20 cm 

thick polystyrene phantom. The tissue equivalent dose rate at the build-up is 28 cGy C-l with 

a relative error of 5 %; 
 RPL (Radio Photo Luminescent) and PAD (Polymer Alanine Dosimeter) dosimeters provided 

and read by the TIS-TE group of CERN [5]. The values where comparable to the one 

measured with the ionization chamber. 

     The beam profile at 9 cm from the production target is evaluated using TLD's (Thermo Luminescent 

Dosimeter) (Fig. 4). 

 
Particle 

type 
Fraction 

Average energy 

(MeV) 
Maximum energy 

(MeV) 

Neutron 1.0 20 50 

Proton 1.5 10
-4 12.61 25 

Electron 1.6 10
-4 1.57 6 

Gamma 2.4 10
-2 1.93 10 

Beam contamination after the filter 
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Experience of VU team in monitoring of radiation impact on carrier recombination and generation lifetime control: 

Post-irradiation 
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 Okmetic MCZ<100> 1kOhm·cm  300 m

 MWR,  CIS  8556- 14 wafers 1 -  63  passivated 

 CIS  8556- 14 wafers measured by DG technique
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Carrier generation/emission and recombination 

 lifetimes in Si detectors (for Mrad >>n0)  
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Qualitative  emission/ thermal generation lifetime  

dependence on fluence can be estimated from I-V’s 
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 Okmetic MCZ<100> 1kOhm·cm  300 m

 MWR,  CIS  8556- 14 wafers 1 -  63  passivated 

 CIS  8556- 14 wafers measured by DG technique

 CIS 8556-01 diodes neutron irradiated
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Nearly linear reduction of generation lifetime 

with enhancement of fluence is similar to that of  

of recombination lifetime characteristic 

after E.Gaubas et al JAP, 110 (2011) 033719  



Carrier recombination lifetimes (for M>>n0)  Single-species (type) traps 
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Although relaxation to  

equilibrium/steady-state 

is kept by M=pM+nM 

n p 

J.S. Blakemore, in: Semiconductor Statistics, Ch. 8, 

Pergamon Press, (1962)  
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Capture coefficient <n> should be used 

instead of  v within rigorous analysis 
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