Progress on the Low Resistance Strip Sensors and Slim Edges Combined RD50 Experiment

CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia)

November 16th, 2012

Víctor Benítez

- **1** Motivation
- 2 Proposal
- **3** PTP designs
 - Inter-layer dielectrics
- 4 Final wafer layout
 - First measurements
- 5 Slim edges experiment
- 6 Conclusions

Motivation

- In the scenario of a beam loss there is a large charge deposition in the sensor bulk and coupling capacitors can get damaged.
- Punch-Through Protection (PTP) structures used at strip end to develop low impedance to the bias line and evacuate the charge.
- Placement of the resistor between the implant and bias rail ("transistor effect").
- Measurements with a large charge injected by a laser pulse showed that the strips can still be damaged
- The *implant resistance* effectively isolates the "far" end of the strip from the PTP structure leading to the large voltages

C. Betancourt, et al. "Updates on Punch-through Protection" ATLAS Upgrade week, Oxford, March 31, 2011.

Víctor Benítez

Proposal

- To reduce the resistance of the strips on the silicon sensor.
- Not possible to increase implant doping to significantly lower the resistance. Solid solubility limit of the dopant in silicon, besides practical technological limits ($\sim 1 \times 10^{20} \text{ cm}^{-3}$)
- Alternative: deposition of Aluminum on top of the implant: $R_{\Box}(AI) \sim 0.04 \ \Omega/\Box = 20 \ \Omega/cm$

PTP designs

- Reduce implant distance to bias ring to favor punch-through effect at low voltages
 - □ Not tried before at CNM
 - □ Very dependent on surface effects (difficult to simulate)
- Poly resistor between the implant and bias rail ("transistor effect")
- Compromise between Punch-Through effect and early breakdown
- Design of experiments varying p, $s \rightarrow d$

PTP designs

• One standard ATLAS07 geometry as reference.

width

(um)

6

4

30

28

22

20

18

16

Progress on the Low Resistance Strip Sensors and Slim Edges Combined RD50 Experiment

PTP designs

- Precise PTP optimization (+DoE)
 - \checkmark Accurate measurement of potential grading along the strip
 - DC pad rows each 2 mm.
 - ✓ Test structure to measure potential along the implant under laser injection.

- Test structures for more precise optimization of PTP geometry.
- Smaller PTP designs also considered in separated 5 channel sensors.

		N – P separation (um)	
		5	3
P-stop width (um)	8	18	14
	6	16	12
	4	14	10

Inter-metal dielectric

- Objectives:
 - ✓ Control breakdown voltage (V_{BD}).
 - \checkmark Reduce pinholes.
- Metal Insulator Metal experiments performed.
 - Deposition of dielectric layers on Aluminum.
 - > Tri-layer dielectric chosen.
 - ✓ TEOS-based oxide. + Si_3N_4 + TEOS-based oxide.

	Tri-layer 1	Tri-layer 2
d (TEOS) [A]	700	1000
d (Nitride) [A]	1000	1000
d (TEOS) [A]	700	1000
V _{BD} (theoric) [V]	141,80	201,80
V _{BD} (expected) [V]	139,01	197,83
C _{strip} /L (theoric) [pF/cm]	35,29	27,01
C _{strin} /L (expected) [pF/cm]	34,57	26,46

Final wafer layout

- 10 mini ATLAS-barrel-like sensors
 - ✓ 64 channels, ~2.3 mm long strips
 - \checkmark Metal strip on top of the implant and connected to it to reduce R_{strip}
 - \checkmark Each sensor with a different PTP geometry (with poly bridge)
- 10 extra standard sensors for reference (no metal on implant)
 - \checkmark Identical to the ones above but without metal strip
- Extra test structures

Víctor Benítez

First measurements

- Technological test structure.
- Allows to measure:
 - > Square resistance.
 - Contact resistance.
 - Bias resistors.
 - Capacitors.
- Data show low parameter variations.
 - Bias resistors variations need to be studied.

	Tri-layer 1		Tri-layer 2	
	Mean	Standard deviation	Mean	Standard deviation
R _{implant N+} (Ohms/cm)	14171,9	59,8	14208,3	72,2
R _{Metal 1} (Ohms/cm)	21,4	3,8	22,6	7,9
R _{Metal1_N+} (Ohms/cm)	20,2	0,5	18,4	2,3
R _{Metal 2} (Ohms/cm)	14,7	1,2	14,1	3,2
R _{Bias} (Ohms)	4,04E+06	5,29E+05	2,94E+06	5,22E+05

Slim edges experiment

- 3 extra wafers in the batch for Slim Edges experiment.
- New mask designed for Aluminum removal in the back side to act as mask for DRIE.
- Si deep etch from the back.
- Trenches 30 um wide and:
 > Opt 1: 10 µm deep etch
 - > Opt 2: $\sim 250-280 \ \mu m$ deep etch
 - Opt 3: XeF₂ etch at NRL
- ALD deposition of Al₂O₃ after etching to passivate surface
- Several trench experiments:
 - 2 guard rings sensors and trench cut close to the last guard ring

Víctor Benítez

- Cut at different guard rings
 - 2 sides cut
 - 4 sides cut

Conclusions

- The status of Low Resistance Strip Sensors and Slim Edges experiments has been presented.
- Low Resistance Strips wafers have been fabricated.
 - Inter-metal tri-layer dielectrics experiments have been designed in order to control breakdown voltage and reduce pin holes.
 - First technological measurements show good results.
- Slim edges experiment:
 - Deep trenches designed at different distances from bias ring to experiment on slim edges.
 - Some extra designs to try full 4-edges cutting of sensors with deep trenches .

Thanks for your attention

CNM 641-88

Víctor Benítez

Progress on the Low Resistance Strip Sensors and Slim Edges Combined RD50 Experiment

Extra slides

CSIC

Metal on implant

- Metal layer deposition on top of the implant before the coupling capacitance is defined.
 - Double-metal processing to form the coupling capacitor
 - A layer of high-quality dielectric.
 - Deposited on top of the first Aluminum (not grown)
 - Low temperature processing (not to degrade AI: T < 400 °C)
- MIM capacitors
 - Low temperature deposited isolation
 - PECVD (300-400 °C)
 - Risk of pinholes (Yield, Breakdown)
 - \circ > 20 pF/cm → ~ 3000 Å
- Experiments performed at CNM to optimize the MIM cap.

MIM experiment

- 6 wafers batch of MIM capacitors.
 - Different sizes:
 - C1: 1100 x 1100 mm2 = 1.20 mm2
 - \circ C2: 600 x 600 mm2 = 0.36 mm2
 - C3: 300 x 300 mm2 = 0.09 mm2
 - o ...
 - (short strips ~ 0.5 mm2)

- Low-temperature deposited isolation.
 - PECVD (300-400 °C). 3 technological options:
 - Op1: 3000 Å of SiH4-based silicon oxide (SiO2) deposited in 2 steps ("Silane")
 - Op2: 3000 Å of TEOS-based oxide deposited in 2 steps ("Tetra-Etil Orto-Silicate")
 - Op3: 1200 Å + 1200 Å + 1200 Å of TEOS-based ox. + Si3N4 + SiH4-based ox.
 - Use of a multi-layer to avoid pinholes.

MIM results

- All 3 options give good MIM capacitors.
- Yield for the largest caps (> 1 mm2). Best for nitride

%	Silane	TEOS	Nitride
C1	81%	86%	94%

- $I_{LEAK} < 3 \text{ pA} @ 20 \text{ V}$ for the largest cap (C1) in all options
- Capacitance (pF/mm2, pF/cm)

C1	Silane	TEOS	Nitride
pF/mm2	122	119.4	110.3
pF/cm	24.4	23.9	22.1

• Breakdown Voltage (V)

V	Silane	TEOS	Nitride
C1	158	154	215

Víctor Benítez

