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Active sensors

Reminder: fluences at

= integrated luminosity: 3000 fb™

= including a safety factor of 2 to account
for all uncertainties this yields for
ATLAS:

= at 5 cm radius:
= ~2¢1(076 n, cm
= ~1500 MRad

= at 25 cm radius
= upto 10 N, cm2
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Implications

= High fluences: trapping dominant
= reduce drift distance, increase field — reduce drift time:
= 3D sensors
= thin silicon
= low depletion depth 'on purpose’:
= low(er) resistivity silicon
* dedicated annealing to increase Net
= Large areas: low cost of prime importance
* industrialised processes
= large wafer sizes
= cheap interconnection technologies

= |dea: explore industry standard CMOS processes as sensors
= commercially available by variety of foundries
= |large volumes, more than one vendor possible
= 8” to 12” wafers
= low cost per area: “as cheap as chips”
= (partially too) low resistivity p-type Cz silicon
= thin active layer
= wafer thinning possible
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AMS H18 HV-CMOS

* Project initiated by Ivan Peric (U Heidelberg)

= Austria Micro Systems offers HV-CMQOS processes with 180 nm
feature size in cooperation with IBM

= biasing of substrate to ~60-100V possible

= substrate resistivity ~20 Ohm*cm — Nex > 10%/cm?
= radiation induced Ne# insignificant even for innermost layers

= depletion depth in the order of 10-20 um — signal ~1-2 ke

= on-sensor amplification possible - and necessary for good S/N
= key: small pixel sizes — low capacitance — |low noise

= additional circuits possible, e.g. discriminator
= beware of 'digital' crosstalk

= full-sized radiation hard drift-based MAPS feasible, but challenging
= aim for 'active sensors' in conjunction with rad-hard readout electronics first

= Scope of the talk:
= Briefly repeat the concept
= Summarise results with MAPS test chips
= Present first measurements with the active sensor prototype chip
= Qutlook: how small can pixels get?

Active sensors
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A HV-CMOS sensor...

= essentially a standard n-in-p sensor

= depletion zone 10-20 pym: signal in the order of 1-2ke-

= challenging for hybrid pixel readout electronics
= new ATLAS ROC FE-14 might be able to reach this region — but no margin
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* implementation of
= first amplifier stages
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...Including active circuits: smart diode array (SDA)

= additional cuircuits: discriminators, impedance converters, logic, ...
= deep sub-micron technology intrinsically rad-hard

. pixel | | Pixel i+1
' P-Well _
HV deep N-well
................... :................T........ 14 IJm @ 100V e e e e e e R R e Hocooooocoooonoonoooonood
~1000 e
Depleted
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P-substrate ! Not depleted
O

CMOS electronics placed inside the diode (inside the n-well)
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Prototypes

= Several test-chips already existing, see backup slides for more
detailed reSUItS Binary information

'%

Analog information

SDA with frame readout
(simple PMOS pixels)
HVM chip

RO chip

Analog information

SDA with sparse readout
(“intelligent” CMOS pixels)
HV2/MuPixel chip

SDA with capacitive readout
(“intelligent” pixels)
Capacitive coupled pixel
detectors
CCPD1 and CCPD2 detectors

Active sensors
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First chip — CMOS pixels
Hit detection in pixels
Binary RO
Pixel size 55x55um
Noise: 60e
MIP seed pixel signal 1800 e
Time resolution 200ns

Prototype summaries

Bumpless hybrid detecto&?

CCPD1 Chip
Bumpless hybrid detector
Based on capacitive chip to chip
signal transfer
Pixel size 78x60um
RO type: capacitive
Noise: 80e
MIP signal 1800e

CCPD2 Chip
Edgeless CCPD
Pixel size 50x50um
Noise: 30-40e
Time resolution 300ns
SNR 45-60

Capacitive digital signal transmission

Irradiations of test pixels
60MRad — SNR 22 at 10C (CCPD1)
10n_ /cm? — SNR 50 at 10C (CCPD2)

ol cBoB R e

o Bl e o Ble

Power and signal bumps

Active sensors

*If work, these features would allow to
operate the readout chip without any
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Frame readout - monolithic

PM1 Chip
Pixel size 21x21um
Frame mode readout
4 PMOS pixel electronics
128 on chip ADCs
Noise: 90e
Test-beam: MIP signal 2200e/1300e
Efficiency > 85% (timing problem)
Spatial resolution 7um
Uniform detection

s

PM2 Chip
Noise: 21e (lab) - 44e (test beam)
Test beam: Detection efficiency 98%
Seed Pixel SNR ~ 27
Cluster Signal/Seed Pixel Noise ~ 47
Spatial resolution ~ 3.8 um

LVDS digital /Os.

Single ramp
ADC

Pixels with voltage amplification (64x128)

ww g

switched

| Analog pads
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Fromm MAPS to active sensors

= EXxisting prototypes would not suitable for HL-LHC, mainly because
= readout too slow
= time resolution not compatible with 40 MHz operation
= high-speed digital circuits might affect noise performance

= |dea: use HV-CMOS as sensor in combination with existing readout
technology
= fully transparent, can be easily compared to other sensors
= can be combined with several readout chips
= makes use of highly optimised readout circuits

= can be seen as first step towards a sensor being integrated into a 3D-
stacked readout chip (not only analogue circuits but also charge
collection)

= Basic building blocks: small pixels (low capacitance, low noise)
= can be connected in any conceivable way to match existing readout
granularity, e.g. ——
= (larger) pixels -
= strips
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Pixels: sizes and combinations

= Possible/sensible pixel sizes: 20x20 to 50x125 pm
= 50x250 pm (current ATLAS FE-I4 chip) too large

= combine several sensor “sub-pixels” to one ROC-pixel
= sub-Pixels encode their address/position into the signal as pulse-height-
information instead of signal proportional to collected charge

= routing on chip is well
possible, also non-neigh-
bour sub-pixels could
be combined and more
than one combination is /

possible
Signal transmitted capacitively m
CCPD Pixels
Bias A -
/ o
4
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FEI4 Pixels
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Pixels: bonding?

= Only reason not to use AC coupling with pixel sensors up to now
was small coupling capacitance in association with low signal
= amplification possible, hence AC transmission not a problem at all
= allows to get rid of costly bump-bonding

= variations in glue thickness are handled by tuning procedures and offline
corrections if necessary

Pixel readout chip (FE-chip)
Pixel electronics based on CSA

L
Coupling | ,
capacitancgf..—w T A Bump-bond pad
) Glue )
i S |
P AN — [
g Transmitting .E? ﬁﬂ Summing line ﬁa
late r
2 i U U
L
77
2
= , 33x 125 uym
<(E> Pixel CMOS sensor
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St rl pS Readout ASIC (such as ABCN)WIre_bondS Strip sensor

= Easiest idea would be empereer oy 2 CSEj
to simply sum all pixels s/
within a virtual strip Y
= Hit position along the >
strip can be again >
encoded by pulse >
height for analogue
rBeea:tcl)eL;t Chlps (eg IseadoutASIC (such as ABCN)Wire-bonds Pixels CMOS sensor
Gomparator or ADC Cig://
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St I’i pS Wire-bonds

Readout ASIC (such as ABCN) Pixels CMOS sensor

o . e e o

= Signals are digital so || [ComparatororADC|
multiple connections
are possible, e.qg.
“crossed strips”
= strips with double

length but only half
the pitch in r-phi
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Reticule size/stitching

= Sensor size is currently limited by reticule size of ~2x2 cm

= however, the yield should be excellent (very simple circuit, essentially no
“central” parts) so it might be interesting to cut large arrays of sensors
from a wafer and connect individual reticules by

= wire-bonding
= post-processing (one metal layer, large feature size)

= There are HV-CMOS processes/foundries which allow for stitching
= \ery slim dicing streets
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V2FEl4

= A combined active strip/pixel sensor was designed and produced
= strips compatible with ATLAS ABCN and LHCb/Alibava Beetle
= pixels match new ATLAS FE-I4 readout chip
= capacitive coupling
= bump-bonding possible

= Structure

" 6 sub-pixels form basic element
= each 33 x 125 ym
= connect to 2 FE-14 pads
= form a 100 pm pitch strip
= small fill factor — future
options:
" more circuits possible
= smaller sub-pixels

Active sensors
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V2FE|4 ‘:,:':‘l

= Chip size: 2.2mm x 4.4mm - s | _* _ ---I-‘f- I

= Pixel matrix: 60x24 (sub-)pixels of 33 ym x 125 um g e de -

= 2110 pads at the lower side for CCPD operation : 7 ] '

= 40 strip-readout pads (100 pm pitch) at the lower
side and 22 |0 pads at the upper side for (virtual) s i
strip operation lllﬂllil!llllllﬂ”ﬂi:: ”

= On chip bias DACs

= Pixels contain charge sensitive amplifier, comparator
and tune DAC

= Configuration via FPGA or pC: 4 CMOS lines (1.8V) }‘PPJ}Z.'}}}}}‘H}}E}’ﬁ‘%SﬂtR

"i'iii'i‘ii'ﬁ\’i‘ii‘l’l‘ii‘l’i‘ii‘t’
L AR LT EALS

3 possible operation modes
= standalone on test PCB _
= strip-like operation ‘f‘ | m}ﬁiﬂ;}ﬂ}‘m@; B
= pixel (FE-14) readout Tl

6 E IR
: SRRRSIXRIRRNERILNLE

Active sensors
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i g’
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Mode
" . i L

Standalone tests L
= first measurements at Mannheim !

Peak Detect
(< 250MS/s)

= behaviour as expected ‘ iy

) ¢ Env]eéope
= monitor output showing physics / - n
i Avesrage

(radioactive source events)

V2FE|4: characterisation

M 400ns ‘A Ch4 \~20.0mV|
19.60 % ’

50.0mvVQb,

Mode Horizontal  Reset
sample luolutlon HoDﬂez;;tal Autoset WaveAlert Sample Rﬂte

I
R T ——
CLERLRRERRORARURRRREb ke

0600000000
3000600000000 V',
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V2FEI4: irradiation SRR {11 pA

o TR

Standalone tests: irradiation

= at CERN/PS on special PCB allowing for
remote operation Amplifier output

= HV2FEI4 powered and read-out during
iIrradiation

= low-intensity beam, before irradiation

itor signal 20m long cable
Monitar signal
0,4V HV2FEI4 <
Board n°2

VDDA - VSSA - Threshold — Gate — HV
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Results after 144 MRad

* The rate of detected particles depends on the high voltage bias,
superposition of two effects:

= Positive effect: The increase of HV bias leads to an increase of the
depleted region depth => better detection efficiency.

= Negative effect: The increase of the leakage current leads to a signal loss.

= Measured leakage current dependence on the high voltage bias
= |Leakage current depends on the volume of the depleted region

Rate vs. HV Leakage current vs. HV
140 oo

= l

2 120 _

L]
Q T 100 1 g 400
(o) & B0 = 300
2 ;g; 0 £ 200
@® 3 E 100
n E 20

< 0
Q>) ’ 0 W 20 30 40 50 60 0 1a 0 30 . 50 60 70
:'("_) HV [Volts] HV [Violts]
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ReSUH:S after 200 M Rad Amplifier and monitor output after 195 MRad

Preliminary irradiation results after IR
~200 Mrad (about IBL fluence!) e S | 1| 1A

= significant radiation effects seen

= discriminator output decreases
with current settings after ~110 e

= “lower” count rate, but physics 100 Count rate vs. dose
still seen
= high gain settings failing
= low gain still works
= strong leakage current increase
(as expected): nA — ~mA

= full characterisation difficult:

= |imited access 40
= radiation vs. temperature effects LL.l.l....
20

HV=30V, HV=30V, low gain
high gain

Amplifier outy
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Preliminary irradiation results:

= Qutput of the amplifier: the chip still
works, particles are measured when
the chip is in the beam

= Comparator characteristics

" many open questions,
need better understanding

1,8 1 /II n
1,6 n
>,
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2 .
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S 1,0
u
0,8 " l/

T T T T T T T T T T T T T T T T T 1
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Input voltage [V]
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Results after 380 MRad and ~ 8 x 10™ neg/CmM
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@ HV2FEI4: strip readout

= ABCN readout being set-up

= Beetle readout in place, but issues

with noise pickup

= also present if HV2FEI4 not powered..."§&

configuration works, “strips” can be |
switched on/off

position-encoding works:
= monitor output on scope
= same principle on strip readout pads
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HV2FEI4: Pixel readout

= First HV2FEI4s glued (!) to FE-I4A and FE-14B

= HV2FEI4 wirebonds done through hole in PCB
= could be bumps or TSVs later

I S A S I
M el el g &
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Active sensors
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V2FEIl4: Pixel readout

= First measurements: R
* FE-I4A (w/ bumps) sees HV2FEI4 being glued to it — | =- " _ -
= Physics (*Na source) is seen by FE-I4B (w/o bumps) = -_;
= ToT position encoding to be 1 - o=

explored and tuned L

o
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Active sensors
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Outlook: back to MAPS?

= 3 aspects for further improvement:
= reduce pixel sizes further — how far can one go?
* reduce thickness of “module” to save radiation length
= reduce cost for large scale usage of a system with pixel-resolution

= smaller pixel sizes

= go to smaller feature size
= digital part directly scales
= analogue part at least partially
" |ower capacitance
= even lower noise
= |less preamp-power (but of course more channels)
" interconnect
= no bump-bonding for pixels in the order of 10x10 pm (maybe SLID)
= capacitive coupling, but also here very dense
go to 3D interconnect? Maybe even 180nm HV-CMOS to 130nm CMOS?
go towards drift-based MAPS? In the end it's all a CMQOS flavour...

Active sensors
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CMOS MAPS

= What feature size/pixel size should be used?

= test chips in 350 and 180nm HV-CMOS had different pixel sizes and
varying levels of intelligence, but were generally not fast enough/did not
have time stamps with 40 MHz

= FE-I4 in 130nm has a cell size of 50x250 um — probably too large
= 65nm aimed for by several chip developers within ATLAS
= suitable as sensor/MAPS?
= 65nm process features
= 20 Ohm*cm resistivity (!)
= deep n-wells (not as deep as in HV processes, but might do)
= work on 65nm chips has anyway started within ATLAS — synergy
= first test chip containing tiny pixels (standard n-well) already done:

Sed ol it el e B W LS R R LD L B LY ] NSNS ——— . T o @ oy il iy

Pixel
Matrix g

........

Active sensors
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65nm test chip

= Tiny pixels (2.5 ym pitch) with charge storage read-out
sequentially

= obviously not for HL-LHC, but 2.5 ym shows what is
possible

= 1 ym gaps between pixels, ~1V bias voltage (!)

= minimal charge sharing due to very shallow depetion
zone: ?2Na clusters are 2-3 pixels

= gpatial resolution (~binary) of 2.5um/{/12=0.7pm (!!)

= Fe-shadow of a 16 pm thick golden bond-wire

\

250 _-" _-d— ‘ e - & 500
Input of the amplifier wl, 1 - =
Bt | - : 1= 150
S~ A T 2500
/7] - .
O g ]
Pl
7)) = 1 ]
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V-CMOS technology: Mu3e-chip

Analog pixel layout
39um

[
»

A

2 metal layers

Monolithic HV-CMOS-chip for the
mu3e-experiment at PSI

= Test-chip dimensions: 42x36 pixels
= Pixel size 39x30 pm
= separated digital and analogue blocks

= signal amplitude can be measured as
ToT
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Mu3e-chip: charge multiplication?

= LED light pulses can be detected
= Signal amplitude was measured as ToT

= Above about 60V bias voltage, an exponential increase in ToT signal
has been observed
= charge multiplication?
= usable effect? i
= investigating...

Time over threshold [us]

10

Reverse bias [V]

£ ¥
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() | | | | |
2 0 20 40 60 80
Q

<

Daniel Muenstermann | 215t RD50 Workshop | CERN | November 16™, 2012 | Slide 29



Daniel Muenstermann
Realistically — what is desirable?

= resolution of tracks in dense jets would be highly welcome for various
reasons

= very thin depletion zone would help to avoid large clusters at high eta in
innermost layers

= realistic pixels sizes (area matters, not shape — can be sgare or rectangular)
= ~10x10 um with little intelligence, but with LHC-speed, sparse readout, ...
= ~20x40 pym should be able to contain all features one could wish for
= track-trigger applications?
= current ATLAS concepts work with short-strip layers without stereo-angle
= 3 double-layers necessary due to fake-rate

= improved resolution (in particular in z) would significantly reduce this
= no loss of z-information for tracking purposes
= better track resolution — better spacer thickness/pT resolution ratio

= MAPS-chips could already contain the combination logic
MAPS-1 ﬁ\

Spacer

MAPS-2 d\

Stave with Flex
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Conclusions

= HV-CMOS processes might yield radiation-hard, low-cost, improved-
resolution, low-bias-voltage, low-mass sensors

= First test chips indicate rad-hardness up to at least 1€15 neq/cm?
= general principles suggest rad-hardness up to full HL-LHC fluence

* Process can be used for
= 'active' n-in-p sensors
= drift-based MAPS chips (baseline for y3e-Experiment at PSI)

= First active sensor prototypes being explored within ATLAS
= capacitively coupled pixel sensors — first results look promlsmg
= "virtual” strip sensors - z-position encoding working '
= |rradiation and testbeam campaign ongoing

= goal: up to HL-LHC fluences at CERN-PS and Ljubljana

= Qutlook: 65nm CMQOS process for sensors?
= test array existing with 2.5 ym pitch, though no intelligence
= only ~uym depletion, but S/N still good (low capacitance) |
= should try deep n-well allowing more bias voltage and some more

realistic pixel size/intelligence

= Possibly charge amplification seen — under investigation
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Backup slides

Active sensors
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= excellent resolution
= very good S/N ratio

= efficiency limited by readout artifacts:
= column-based readout
= row not active during readout
= data analysis did not correct for this
= very small chip — low statistics

| Efficiency vs subpixel particle position in X/Y |

0.02
0.018
0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

0O 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Efficiency vs. the in-pixel position of the fitted hit.
Efficiency at TB: ~98% (probably due to a rolling
shutter effect)
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Test beam results: monolithiC pyamm
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Active sensors

CPPD prototype results

= excellent noise behaviour: stable
threshold at ~330 electrons

= good performance also after irradiation

Power supply
and cont. signals

Power supply for the readout chip

and cont. signals l o A
for the sensor 1.5 mm

g i
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Efficiency

Daniel Muenstermann
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Detection efficiency vs. amplitude
Detection of signals above 330e
possible with >99% efficiency.
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Daniel Muenstermann

CPPD prototype results

* [rradiation with 23 MeV protons: 1e15 neqg/cm2, 150MRad
= FE-55 performance recovers after slight cooling
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