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Studies in 2012: what we have learnt

What is the status LHC 25ns beam in the SPS?
* Nominal intensity (1.2e11 ppb)
e Ultimate intensity (1.7e11 ppb)

In case coating is needed, which are the most critical parts?

e Strip detector measurements with MBA and MBB profiles

What do we expect for increasing bunch intensities?

* Intensity scan for strip detector measurements

Where does the dynamic pressure rise in aC coated chambers come from?

* Dedicated experiment with solenoid on aC coated drift

How can we learn more about the electron cloud effect?
» Data acquisition for models/code validation and benchmarking
* Development of microwave transmission technique

e Shielded pickup measurements
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No visible signature of the electron cloud is observed on the beam!
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LHC 25ns beam (nominal intensity)

We are profiting of scrubbing accumulated over the years.

No visible signature of the electron cloud is observed on the beam!
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No emittance growth in 2012 with 4 batches
* With low chromaticity in both planes

e Identical behavior of all 4 batches

* No blow-up along bunch train
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LHC 25ns beam (nominal intensity)

We are profiting of scrubbing accumulated over the years.

No visible signature of the electron cloud is observed on the beam!
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LHC 25ns beam (nominal intensity)

We are profiting of scrubbing accumulated over the years.
No visible signature of the electron cloud is observed on the beam.

Bunch by bunch tune
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BLOW-UP

y LHC 25ns beam (nominal intensity)
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We are profiting of scrubbing accumulated over the years.
No visible signature of the electron cloud is observed on the beam.
Chromaticity
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Y LHC 25ns beam (nominal intensity): dynamic pressure rise
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Together with effects on the beam, the dynamic pressure rise is the only other

observable to qualify the present conditioning state of the SPS ring.
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Ramarks:

In 2012 the pressure rise is smaller by a

factor 10% w.r.t. beginning 2002!

(>=1week scrubbing runs in 2002, 2003,
2004, 2006, 2007)

Not clear if still dominated by EC (seems
to be enhanced by losses)

No particular difference between Q20

and Q26
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S~\  What is the status LHC 25ns beam in the SPS?
 Nominal intensity (1.2e11 ppb)
* Ultimate intensity (1.7e11 ppb)

In case coating is needed, which are the most critical parts?

e Strip detector measurements with MBA and MBB profiles
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e Dedicated experiment with solenoid on aC coated drift
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Y LHC 25ns beam (ultimate intensity): dynamic pressure rise
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Ramarks:
. Pressure rise in the arcs much stronger (x4 or
more) than with nominal intensity.
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Y LHC 25ns beam (ultimate intensity): dynamic pressure rise
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Ramarks:
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Compatible with e-cloud:

e for higher intensity the e-cloud can extend
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Y LHC 25ns beam (ultimate intensity): dynamic pressure rise
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Ramarks:

Pressure rise in the arcs much stronger (x4 or
more) than with nominal intensity.

Compatible with e-cloud:

e for higher intensity the e-cloud can extend
to non conditioned regions
e Preliminary tests with radial steering on

50ns beam seem to confirm this

explanation
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Ramarks:

Pressure rise in the arcs much stronger (x4 or

more) than with nominal intensity.

Compatible with e-cloud:

e for higher intensity the e-cloud can extend
to non conditioned regions

e Preliminary tests with radial steering on
50ns beam seem to confirm this
explanation

* Indications of conditioning were observed
within a few hours of run with this

intensity



y LHC 25ns beam (ultimate intensity): dynamic pressure rise
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Ramarks:
Pressure rise in the arcs much stronger (x4 or

more) than with nominal intensity.

Compatible with e-cloud:
e for higher intensity the e-cloud can extend

to non conditioned regions

e Preliminary tests with radial steering on

50ns beam seem to confirm this

0-9%00 1750 1800 1850 1900 1950 2000 2050

Cycle explanation

* Indications of conditioning were observed
within a few hours of run with this

intensity

LJ) Bunch by bunch emittance/tune measurements to be done



Y Studies in 2012: what we have learnt

In case coating is needed, which are the most critical parts?

e Strip detector measurements with MBA and MBB profiles
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ECM signal [a.u.]

Strip detectors: MBA vs MIBB
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Y Strip detectors: MBA vs MIBB
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Measurements with 50ns beam before and after few hours of scrubbing with 25ns beam
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Ramarks:

* Consistent with simulation estimations (6,,,=2. for MBA, 6,,=1.6 for MBB for

50ns beam)
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Studies in 2012: what we have learnt

What do we expect for increasing bunch intensities?

* Intensity scan for strip detector measurements



Strip detectors — dependence on bunch intensity
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* E-cloud in the central region (important for beam quality) is non increasing with

bunch intensity (consistent with our EC model ©)
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Strip detectors
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Strip detectors

1
~/ 7 ~ =
o~ - .
~ A — [ ]
1.4 le4
1.2 led ,
= 1.2 Yoo
3
. MBA o !
1.0 o, .
§ 1.0}
0.8¢ c b
18} .
<08 ,
0.6} o
8 0.6 :
04+ = h
504}
0.2} < )
C 0.2}
0.0 ks 4 .
08602 04 06 08 1o 12 14 16
_0-_230 20 Bunch intensity [ppb] lell - 0 10 20 30
Position [mm] Position [mm]
Ramarks:

J

MBA is less critical than MBB
E-cloud in the central region (important for beam quality) is non increasing with

bunch intensity (consistent with our EC model ©)
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Studies in 2012: what we have learnt

Where does the dynamic pressure rise in aC coated chambers come from?

* Dedicated experiment with solenoid on aC coated drift



Y Pressure rise in aC coated chambers
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y Pressure rise in aC coated chambers
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Pressure rise in aC coated chambers
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The profile shows that the Ap to 51420, 51440 and 51460 strongly decreases and

peripheral regions

are not affected.
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Studies in 2012: what we have learnt

How can we learn more about the electron cloud effect?

» Data acquisition for models/code validation and benchmarking
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Studies in 2012: what we have learnt

How can we learn more about the electron cloud effect?

* Development of microwave transmission technique



Y Microwave transmission setup

MBB 315 MBB 177 cab,?
'q_l L L]_l'
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[ 1 | I tunnel
SURFACE IN BAS
DC block DC block  SG: signal generator
VSA: vector spectrum analyzer
Filter Filter
Amplifier Amplifier
VSA SG

 The setup detects the phase modulation introduced by the electron cloud on an EM

wave traveling along the beam pipe

* In 2012 measurements have been performed over the length of two consecutive,

uncoated SPS MBB-type dipoles

l\J) F. Caspers, S. Federmann, M. Holz
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y Microwave transmission setup

A: Ch1 Spectrum v X
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B: Ch1PM Spectrum
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left: reference signal 42 kHz
right: EC related signal 43.35 kHz

EM

Center ¢ Span 50 kHz
Res BW 2 TimelLen 128

LECEENB: Ch1 PM Spectrum

Display of the vector spectrum analyzer during a measurement with a visible phase
shift due to electron cloud presence.

Strong phase-modulated reference signal at 42 kHz and weak e-cloud induced
phase modulation at 43.45 kHz (SPS revolution frequency)

F. Caspers, S. Federmann, M. Holz



Microwave transmission setup
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Y Microwave transmission setup

~7_~"

Possible further improvements:
The new spectrum analyzer enables us to record much more data:

o  Measuring with an increased bandwidth of 1 MHz (former 100 kHz) and include
harmonics of the phase-modulated signal;

o  Reconstruct phase shift along the bunch train to compare with e-cloud build-up

simulations

. With help of the reference signal, whose phase shift is known and pre-set, the phase
shift of the EC induced signal can be quantified, providing first quantitative
estimations of the average EC density in the measured dipoles;

. Once this measurement technique is optimized and fully developed, it could serve as
online monitoring of the average e-cloud density (remote acquisition from the CCC to
be setup)

l\J) F. Caspers, S. Federmann, M. Holz
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~>~\  What is the status LHC 25ns beam in the SPS?
 Nominal intensity (1.2e11 ppb)
e Ultimate intensity (1.7e11 ppb)

In case coating is needed, which are the most critical parts?

e Strip detector measurements with MBA and MBB profiles

What do we expect for increasing bunch intensities?

* Intensity scan for strip detector measurements

Where does the dynamic pressure rise in aC coated chambers come from?

e Dedicated experiment with solenoid on aC coated drift

How can we learn more about the electron cloud effect?
« Data acquisition for models/code validation and benchmarking

* Development of microwave transmission technique

lJJ' e Shielded pickup measurements



Shielded pickup measurements

S~\  Ashielded pickup (prepared by F. Caspers. E. Mahner and T. Kroyer in 2007) has
been reinstalled in the SPS.
Remote data acquisition has been setup and a digital filter has been applied in
order to get the ecloud related signal .
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Shielded pickup measurements

The memory effect between batches is clearly visible.
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Shielded pickup measurements

The memory effect between batches is clearly visible.
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)/ Shielded pickup measurements

—7 A The memory effect between batches is clearly visible.
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)/ Shielded pickup measurements

—7 A The memory effect between batches is clearly visible.
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<7 -\ What is the status LHC 25ns beam in the SPS?

* Nominal intensity (1.2e11 ppb): we are profiting of the scrubbing accumulated
over the years. In 2012 no visible signature of the EC (on the cycle timescale);
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wall, reaches un-scrubbed regions, resulting in a strong pressure rise = further
scrubbing needed
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wall, reaches un-scrubbed regions, resulting in a strong pressure rise = further
scrubbing needed

In case coating is needed, which are the most critical parts?

e ECM measurements confirm that MBB is more critical than MBA
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<7 -\ What is the status LHC 25ns beam in the SPS?

* Nominal intensity (1.2e11 ppb): we are profiting of the scrubbing accumulated
over the years. In 2012 no visible signature of the EC (on the cycle timescale);

e Ultimate intensity (1.7el11 ppb): EC extends over a larger part of the chamber’s
wall, reaches un-scrubbed regions, resulting in a strong pressure rise = further
scrubbing needed

In case coating is needed, which are the most critical parts?
 ECM measurements confirm that MBB is more critical than MBA
What do we expect for increasing bunch intensities?

» Stripes move farther from the beam, central density not increasing (less
critical for the beam)
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Studies in 2012: summary

What is the status LHC 25ns beam in the SPS?

* Nominal intensity (1.2e11 ppb): we are profiting of the scrubbing accumulated
over the years. In 2012 no visible signature of the EC (on the cycle timescale);

* Ultimate intensity (1.7el11 ppb): EC extends over a larger part of the chamber’s
wall, reaches un-scrubbed regions, resulting in a strong pressure rise = further
scrubbing needed

In case coating is needed, which are the most critical parts?
 ECM measurements confirm that MBB is more critical than MBA
What do we expect for increasing bunch intensities?

» Stripes move farther from the beam, central density not increasing (less
critical for the beam)

Where does the dynamic pressure rise in aC coated chambers come from?

* Dedicated experiment with solenoid on aC coated drift has shown no EC
contribution due to the coated chamber itself



(&)

~7_~"

U

Studies in 2012: summary

What is the status LHC 25ns beam in the SPS?

* Nominal intensity (1.2e11 ppb): we are profiting of the scrubbing accumulated
over the years. In 2012 no visible signature of the EC (on the cycle timescale);

* Ultimate intensity (1.7el11 ppb): EC extends over a larger part of the chamber’s
wall, reaches un-scrubbed regions, resulting in a strong pressure rise = further
scrubbing needed

In case coating is needed, which are the most critical parts?
 ECM measurements confirm that MBB is more critical than MBA
What do we expect for increasing bunch intensities?

» Stripes move farther from the beam, central density not increasing (less
critical for the beam)

Where does the dynamic pressure rise in aC coated chambers come from?

* Dedicated experiment with solenoid on aC coated drift has shown no EC
contribution due to the coated chamber itself

How can we learn more about the electron cloud effect?

* Progresses in MW transmission and shielded pickup measurements
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Studies in 2012: what could still be done




y Studies in 2012: what could still be done
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Further studies with ultimate intensity 25ns beam:
. Beam characterization (looking for EC indications)

. Look for vacuum conditioning along the ring and for scrubbing on the liners
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Further studies with ultimate intensity 25ns beam:
. Beam characterization (looking for EC indications)
. Look for vacuum conditioning along the ring and for scrubbing on the liners
Look for incoherent effects on the nominal 25ns on a longer timescale:
*  Coast 25ns beam at 26GeV
Scrubbing in the machine and in the lab: are we facing the same mechanism?
. Copper liner installed for comparison
. Measure the StSt removable sample (in the machine for the entire 2012 run)
Analyze dark layer observed in dipoles and pumping port RF shields
Repeat the experiment with the solenoids (conditioning expected on StSt parts)

Understand how localized is the scrubbed region by displacing the beam (radial
steering)
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During LS1 it will be crucial to preserve the vacuum of the SPS as much as possible:

. Limit vented portions and duration of the exposition to air
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Scrubbing run needed after LS1 to provide beam to the LHC (especially 25ns beam):
*  Long cycle (>40s) needed to be efficient, other long users in parallel to be

avoided (ideally SPS scrubbing before LHC start-up)

aC coating:
. Installation of two fully coated cells will be completed during LS1 for tests on
static and dynamic pressure rise (in comparison with StSt) and robustness of the

coating after 1-2 years of operation

. Long aC coated drift with solenoid to be replaced with StSt one for comparison
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During LS1 it will be crucial to preserve the vacuum of the SPS as much as possible:
. Limit vented portions and duration of the exposition to air
Scrubbing run needed after LS1 to provide beam to the LHC (especially 25ns beam):

*  Long cycle (>40s) needed to be efficient, other long users in parallel to be
avoided (ideally SPS scrubbing before LHC start-up)
aC coating:

. Installation of two fully coated cells will be completed during LS1 for tests on
static and dynamic pressure rise (in comparison with StSt) and robustness of the

coating after 1-2 years of operation

. Long aC coated drift with solenoid to be replaced with StSt one for comparison

Towards high brightness:
e  After LS1, profit of “high brightness” RF schemes available in the PS to explore

l ) the sensitivity of these beams to the EC in the SPS
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€™ Cloud Studies in the SPS
Pressure evolution with dose
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Introduction

<7 4\ Results of electron cloud studies (typically 25ns beam, more focus 26GeV) from:
e 2012 SPS Scrubbing Run (26-30 March)
. Dedicated MD 25 April
. Floating MD 22 May
 Dedicated MD 25 June

SPS-PAGEL Current user: LHCMD1 26-04-12 04:17:16
SC 64243 (27BP, 32.4s) FT: 16523 ms Last update: 24 seconds ago

Experiment
H2/H4
H&/H&

COMPASS

0.0 E11 Comments (26-04-12 04.06)

0.0 E11 Phone: 77500 or 70475
—  7070U09090909B9B909BDBDBDUBDBDBDBDBDBmBDmBmDmDmDmDmD Machine development until Thursday 9:00
LHCMD1 3123 E10 2923 E10 No CNGS before Thursday noon




2012 SPS Scrubbing Run
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y Dynamic pressure rise
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Together with effects on the beam, the dynamic pressure rise is the only other

observable to qualify the present conditioning state of the SPS ring.

351813
3.0t 26 GeV
T 2.5}
220+
5 15}
m 1.0

0.5} |

0.0
Ei‘% — 12940
235 22940
- gg 32940
5 2.0 42940
ﬁ%g 52940
a 0.5 — 62940




Pressure rise [mbar]

=
o
o

=
o
&

=
o
A

=
o
o

107

Dynamic pressure rise

Position [m]

: . o i : i
0 1000 2000 3000 4000 5000 6000 7000



Pressure rise [mbar]

Dynamic pressure rise

Typical pressure rise profile (25ns)
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y Dynamic pressure rise
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Dynamic pressure rise — effect of losses

<7 A\ Cycle with nominal settings
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y Dynamic pressure rise — effect of losses

<7 A\ Cycle with low RF voltage
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Dynamic pressure rise — effect of losses

<7 A\ Cycle with nominal settings
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Dynamic pressure rise — effect of losses

Cycle with low RF voltage
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Y Cycle with nominal settings
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Y Cycle with low RF voltage

Pressure [mbar]
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Dynamic pressure rise — effect of losses
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Y Dynamic pressure rise — effect of losses

<7 A\ Cycle with low vertical chromaticity (<0.05), transverse instability
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Y Strip detectors

C.Y. Vallgren et al., PRSTAB
B-field
Liner with holes —\

(7% geometry transparency)

L e S IS

a-C coating

NATREEY
SRR,

C-magnet chamber

Soaa

B

A
LS

e-cloud strip detector with 48 Cu-strips

Very powerful tool since they allows to measure the horizontal profile of the electron

flux to the wall (av. over 10 — 100 ms), but:
* |tis not representative of the present conditioning state of the machine

* The holes may significantly affect (slow down) the conditioning of the chamber
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ECM signal [a.u.]

Strip detectors — “microbatches”
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ECM signal [a.u.]

y Strip detectors — “microbatches”
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Y Strip detectors — conditioning

S~\  Warning: expected to be slower than in “real” bending magnets!

2012 Scrubbing run
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Strip detectors — conditioning

Warning: expected to be slower than in “real” bending magnets!

Scrubbing beam dose [Ah]

Not much conditioning observed during SR, but the

liner had been already exposed to 25ns beam
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Strip detectors — conditioning

)

S~\  Warning: expected to be slower than in
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The conditioned area can be localized with horizontal displacements of beam in the ECM
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ECM signal [a.u.]
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Strip detectors — conditioning
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Measurements with 50ns beam before and after few hours of scrubbing
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