LIU Beam Studies Review

SPS Session

28-Aug-2012
Q20 instability improvement

• TMCI
 – threshold expected at 3.5×10^{11} for low vert chroma
 – Up to 4×10^{11} no TMCI observed
 – Gives margin to reach HL LHC intensities

• Space charge:
 – For Q26 with chroma 0.25 can go up in single bunch intensity but struggling with losses due to TMCI
 – Similar brightness, but better losses for Q20
 – Slightly smaller tune spread for Q20 due to larger dispersion
 – With Q20 can also go up in intensity with lower chroma

• Ecloud
 – Not limited at present, but more margin for Q20 (simulation)
 – Could help for 25 ns beam

• Longitudinal
 – Threshold decreases with energy, controlled blowup
 – Need less blow up for Q20
 – Could also get in trouble at injection with more intensity from PS
Q20 to LHC and studies left

• Bunch length at extraction
 – need more voltage
 – For given emittance longer bunches – capture in LHC
 – Gvie bunch length, smaller long em – IBS in LHC

• Longitudinal beam quality at flattop
 – For Q20 slightly unstable without blow up

• Need to study 25 ns beam for Q20 this year

• Short bunches at LHC
 – Bunch length growth for short bunches 1.45 ns
 – Longer bunches in LHC 1.7, no capture losses, less bunch len growth

• Final steps to make Q20 operational
 – Probe cycle, extraction settings verification, transverse blow up, tails, SPS LLRF

• Studies left for 2012
 – Tails and transverse emittance for 50 ns
 – 25 ns with Q20 optics
 – Single bunch high int for SC and TMCI
 – Ions with Q20, IBS and SC
Q20 discussion

- Dampers: this degree of freedom should be taken into account and properly designed instabilities can be suppressed, does not appear in all machines! Proper parameter place to be chosen, chroma! - High bandwidth FB is addressed in SPS
- Optimisation for IBS growth, in LHC we can do batch by batch blowup and decouple the machines; from MD it seems we don’t need batch by batch blowup for these intensities
- Same long emitt as for Q26, we would try to work with same bunch length – was motivated by capture losses which were not seen in MD, could optimise bunch length, more difficult if we need the same long emittance
- From LHC the limit is capture voltage, should not go to limit of 8 MV; bunches come always with smaller dp/p but same bunch length so we don’t need more voltage
- For MD no setting in LHC had to be changed apart from transfer line settings
- IBS: what is smaller in emittance at LHC collision has faster lumi decay at present operation – no big deal now
Ecloud lessons from 2012 studies

- 25 ns beam, nominal intensity
 - No emittance growth with 4 batches as seen in 2000, (with low chroma settings)
 - In 2000 pos tuen shift (ecload), 2012 negative (impedance?)
 - High chroma needed in 2000 for stability, no degradation in 2012 even with low chroma
 - Only other observable is pressure rise, smaller by 10^4 than 2002

- 25 ns, ultimate intensity
 - For higher int ecloud can reach non conditioned areas – pressure rise, tried with radial steering, seems to confirm, more tests
 - Conditioning observed with a few hours on these intensities
 - By moving the beam 1 cm clearly see effect even with 50 ns beam on pressure rise by factor 10 – expected by simulations

- Coating:
 - MBA less critical than MBB (risetime, flux, central density) with 25ns
Ecloud lessons from 2012 studies

• Bunch intensity dependence
 – MBA less critical
 – Ecload in central region not increasing with intensity (consistent with model)

• Dynamic pressure rise
 – Why do we observe a dynamic rise on coated chambers?
 – Comes only from stainless steel part of machine

• How to learn more about ecloud?
 – Data logging
 – Microwave transmission technique: send EM wave through pipe and detect phase modulation by ecloud, further increased bandwidth, quantitative estimations of e densities and finally online monitoring, shielded pick up with remote data acquistion to get ecloud decay time
Ecloud studies left and after LS1

• Still to be done this year
 – 25 ns ultimate int
 – Incoherent effects, coast at 26 GeV for some minutes
 – Scrubbing in machine and lab
 • Copper
 • Stainless steel
 • Analyse dark layer on chambers
 – Repeat solenoid experiment
 – Scrubbing localisation

• In LS1:
 – Crucial to preserve vacuum
 – After LS1 scrubbing run with long 40 s cycle
 – Two fully coated cells to be installed, remove aC coated drift with STSt
 – After LS1 profit of high brightness RF schemes in PS
Ecloud discussion

• Decision about coating or scrubbing, asymptotic value of SEY, still correct? - in lab still like this, but the vacuum situation is different in machine and lab, chemical reaction different, startup after LS1 crucial

• Vac quality during LS1 very important, need to know how much time needed for scrubbing, presently consider 2 weeks?

• aC coating or not depends on (Bren’s summary):
 – does aC work as a mitigation? Present answer is yes.
 – is present SPS performance with well-scrubbed machine acceptable for today's and tomorrow's beams? Less obvious, but present performance with 50 ns excellent and nominal 25 ns promising - can we extrapolate easily to HL-LHC regime?
 – can we quickly scrub SPS back to 'acceptable' situation after a long shutdown? This remains to be demonstrated - do we need reference measurements end 2012 to compare with 2014 startup?

• Possible minimum of eclound with bunch intensity, when losing eclound in centre your are losing nonlinearity, so could be misleading that it is beneficial - see clearly also in LHC that we are dependent on central density

• What do you expect for LHC 25 ns beam – emittance growth
Longitudinal instability studies in 2012

- **LHC beam quality in Q26:**
 - Unstable bunches at flat bottom for $N > 1.5 \times 10^{11}$
 - Batch 4 spends no time at flat bottom \rightarrow unstable at the end of ramp or flat top
 - Enhanced instabilities due to increased spread of incoming bunches
 - **Solutions:**
 - Take out the dips in the 200 MHz RF voltage program (done)
 - Introduce more time at flat bottom after the 4th injection (longer FB)
 - Increase emittance blow-up in the PS (3x4.5 kV) \rightarrow more stable in PS \rightarrow
 - less spread of bunch parameters at injection in the SPS
 - **Cost:** more losses - about 1%
 - **Q20 (still better with longer FB)**

- Longitudinal impedance identification using long injected bunches (~25 ns) with
 - RF off:
 - Measurements as in the past (1997, 2001, 2007...) of the beam spectrum
 - show a high mode amplitude at 1.4 GHz \rightarrow low Q impedance to be identified
Longitudinal instability studies in 2012

- Longitudinal instability thresholds measured at flat bottom and flat top in single RF:
 - Single bunch (ε_L~0.28 – 0.32 eVs):
 - Flat bottom: Loss of Landau damping due to injection V mismatch – stable
 - with low (matched) capture voltage > 1.4x10^11
 - Flat top: N_{th}~1x10^{11} p
 - Single 50 ns LHC batch:
 - Flat bottom: 1.5x10^{11} < N_{th} < 1.8x10^{11} p/b → similar to single bunch
 - Flat top: N_{th}< 0.4x10^{11} → stronger effect of beam loading at 800 MHz RF (?)

- 50 ns LHC beam Q20
 - N_p~(1.5 - 1.6)x10^{11} p/b on flat top
 - Stable beam on FB
 - Acceptable beam parameters at extraction (bunch length) – injected to LHC
 - Scaling of bunch length/stability between Q20 and Q26 as expected
 - More possibilities with upgraded 200 MHz RF (LS2)
Longitudinal instability plans for 2012/13

MDs:
- High intensity 50&25 ns beam in Q20 → operational. And Q26? (losses increased in the first test)

- Study (thresholds) of single and multi-bunch instability at injection for Q26 and during ramp for Q20 and Q26 in a single and double RF systems

- Reference impedance measurements from quadrupole frequency shift at injection and stable phase shift (? – more difficult)

Simulations:
- Identify the impedance from comparison with measurements done with long (RF off) and short (RF on) bunches

- Reproduce the measured thresholds for single bunches (PL on/off)
Long. instability: Questions to be answered

- **Requirements for the 800 MHz system:**
 - 2nd cavity operational (idle at the moment) – more voltage and better control
 - FB and FF for phase and voltage control under strong beam loading for the two cavities (work in progress)
 - Phase calibration (now based on bunch shape/stability)

- **What else do we need to know to estimate performance after LIU:**
 - Impedance source of longitudinal instabilities \rightarrow measurements of HOMs in the 200 MHz and 800 MHz TW RF systems in labs (spares, not fully equipped) and in situ (tunnel) during LS1 (F. Caspers, E. Montesinos + new fellow/PhD student)
 - 1.4 GHz
 - Complete impedance model
Long. Instability Discussion

• Instability seen in single RF, single batch - should be seen for single bunch as well which is not the case
• The more un-uniform the beam from the PS, the more unstable the beam in the SPS at FT because blow-up becomes more difficult
• In MD found that voltage dips are also important and allow for blow-up due to mismatch
• Also parameter in LLRF found to become more independent from PS beam quality
High bandwidth damper - MD studies in 2012

• Synchronized excitation signal to the bunch.
• Established method by which time aligning can be performed quickly and reproducibly, using variable delay line.
• Excited the beam with band-filtered random noise.
• Excited beam to instability, different modes.
High bandwidth damper - 2012 MD slots

With LARP:

- *LARP meeting in Frascati 14-16 November 2012*
- **1st slot:** Beginning of October or before above November LARP meeting: *fine timing, excitation of bunch in a train*
- **2nd slot:** As late as possible, weeks 47 and 48 after LARP meeting: *tests of new hardware for “demonstrator” to close FB loop*

Further:

- One dedicated MD with bunch trains at 25 ns
- MDs to check the developed hardware orbit compensation (Urs Wehrle)
- **Note:** any MDs next year (26 GeV) would be extremely useful (consolidated Hardware) for extended demonstrator tests and prototype specification.
Addressing the specific questions...

- Which studies will still require significant MD time before LS1?
 - List of topics given above
- Is any study presently limited by instrumentation or diagnostics? Any improvement possible before LS1?
 - Limited by speed of HW development and availability, rather than intrinsic SPS instrumentation
- Is any study strongly relying on the installation and test of new hardware before LS1?
 - Yes – the single bunch ‘demonstrator’ studies require the HW for the feedback processing channel to be available...tight for end 2012
- How can we optimize the use of the remaining available MD time? Do we need to request for more?
 - The timing of the MD is most critical – as late as possible
- Which are the main motivations why we could benefit from the extension of the MD run into 2013?
 - Would be very useful indeed, as HW will arrive very late in the year. Increase time for measurement, reduce risk of missing deadline, ...
Damper discussion

- MD time really dedicated?
 - means 25 ns cycle but no coast SPS, 12 b would be fine
 - No HI beam next year, which are the CNGS and TOF like beams
 - Two issues, RP and 80 Mhz in PS
 - Probably not highest intensity needed for this MD

- Behaviour of damper for higher number of bunches could be different, should be tested as high as possible
 - Not possible this year
 - Impo effort in parallel going on in simulations

- In what optics
 - Q20 - so what to dump?
 - Can go to higher intensities
 - Should keep Q26

- Still don’t know if PS damper effective at high energy, since beam is not unstable
 - Have to understand if damper from today is enough or more bandwidth needed
 - Mode 0 damping at 0.2 chroma
 - Going to try at high energy but was designed for inj oscillations