

LHC Injectors Upgrade

LIU Beam Studies Day – setting the scene

Giovanni Rumolo in LIU Beam Studies Day, CERN, 28 August 2012

- Milestones for future LHC beams
- Injector MD schedule: where we are now, how much is left
- Requests for LIU MDs this year and current status
 - $\rightarrow \mathsf{PSB}$
 - \rightarrow PS
 - \rightarrow SPS

Concluding remarks

2012

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nominal				4
beam current [A]0.581.120.89x-ing angle [µrad]300480550beam separation [σ]101010 β^* [m]0.550.150.15 ε_n [µm]3.752.53.0 ε_L [eVs]2.512.552.5energy spread1.20E-041.20E-041.20E-04bunch length [m]7.50E-027.50E-027.50E-02IBS horizontal [h]80 -> 10620.020.7IBS longitudinal [h]61 -> 6015.813.2Plwinski parameter0.682.542.66geom. reduction0.830.370.35beam-beam / IP3.10E-033.9E-035.0E-03Peak Luminosity1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	beam current [A]0.581.120.89x-ing angle [µrad]300480550beam separation [σ]101010 β^* [m]0.550.150.15 ε_n [µm]3.752.53.0 ε_L [eVs]2.512.52.5energy spread1.20E-041.20E-041.20E-04bunch length [m]7.50E-027.50E-027.50E-02IBS horizontal [h]80 -> 10620.020.7IBS longitudinal [h]61 -> 6015.813.2Piwinski parameter0.682.542.66geom. reduction0.830.370.35beam-beam / IP3.10E-033.9E-035.0E-03Peak Luminosity1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	N				\mathbf{X}	Γ
x-ing angle [μ rad]300480550beam separation [σ]101010 β^* [m]0.550.150.15 ε_n [μ m]3.752.53.0 ε_L [eVs]2.512.552.5energy spread1.20E-041.20E-041.20E-04bunch length [m]7.50E-027.50E-027.50E-02IBS horizontal [h]80 -> 10620.020.7IBS longitudinal [h]61 -> 6015.813.2Piwinski parameter0.682.542.66geom. reduction0.830.370.35beam-beam / IP3.10E-033.9E-035.0E-03Peak Luminosity1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	x-ing angle $[\mu rad]$ 300480550beam separation $[\sigma]$ 101010 β^* $[m]$ 0.550.150.15 ϵ_n $[\mu m]$ 3.752.53.0 ϵ_L $[eVs]$ 2.512.52.5energy spread1.20E-041.20E-041.20E-04bunch length $[m]$ 7.50E-027.50E-027.50E-02IBS horizontal $[h]$ 80 -> 10620.020.7IBS longitudinal $[h]$ 61 -> 6015.813.2Piwinski parameter0.682.542.66geom. reduction0.830.370.35beam-beam / IP3.10E-033.9E-035.0E-03Peak Luminosity1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	n _b	2808	2808		\backslash	
x-ing angle [µrad]300480550beam separation [σ]101010 β^* [m]0.550.150.15 ϵ_n [µm]3.752.53.0 ϵ_L [eVs]2.512.52.5energy spread1.20E-041.20E-041.20E-04bunch length [m]7.50E-027.50E-027.50E-02IBS horizontal [h]80 -> 10620.020.7IBS longitudinal [h]61 -> 6015.813.2Piwinski parameter0.682.542.66geom. reduction0.830.370.35beam-beam / IP3.10E-033.9E-035.0E-03Peak Luminosity1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	x-ing angle [µrad]300480550beam separation [σ]101010 β^* [m]0.550.150.15 ϵ_n [µm]3.752.53.0 ϵ_L [eVs]2.512.52.5energy spread1.20E-041.20E-041.20E-04bunch length [m]7.50E-027.50E-027.50E-02IBS horizontal [h]80 -> 10620.020.7IBS longitudinal [h]61 -> 6015.813.2Piwinski parameter0.682.542.66geom. reduction0.830.370.35beam-beam / IP3.10E-033.9E-035.0E-03Peak Luminosity1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	beam current [A]	0.58	1.12	0.89	7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x-ing angle [μrad]	300	480	550	at LHC collision	peration
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	beam separation $[\sigma]$	10	10	10		5ns bear
		β* [m]	0.55	0.15	0.15		
energy spread 1.20E-04 1.20E-04 1.20E-04 bunch length [m] 7.50E-02 7.50E-02 7.50E-02 IBS horizontal [h] 80 -> 106 20.0 20.7 IBS longitudinal [h] 61 -> 60 15.8 13.2 Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	energy spread 1.20E-04 1.20E-04 1.20E-04 bunch length [m] 7.50E-02 7.50E-02 7.50E-02 IBS horizontal [h] 80 -> 106 20.0 20.7 IBS longitudinal [h] 61 -> 60 15.8 13.2 Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	ε _n [μ m]	3.75	2.5	3.0		
bunch length [m] 7.50E-02 7.50E-02 7.50E-02 IBS horizontal [h] 80 -> 106 20.0 20.7 IBS longitudinal [h] 61 -> 60 15.8 13.2 Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	bunch length [m] 7.50E-02 7.50E-02 7.50E-02 IBS horizontal [h] 80 -> 106 20.0 20.7 IBS longitudinal [h] 61 -> 60 15.8 13.2 Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	ε _L [eVs]	2.51	2.5	2.5		
IBS horizontal [h] 80 -> 106 20.0 20.7 IBS longitudinal [h] 61 -> 60 15.8 13.2 Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	IBS horizontal [h] $80 \rightarrow 106$ 20.0 20.7 IBS longitudinal [h] $61 \rightarrow 60$ 15.8 13.2 Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP $3.10E-03$ $3.9E-03$ $5.0E-03$ Peak Luminosity 110^{34} 9.010^{34} 9.010^{34}	energy spread	1.20E-04	1.20E-04	1.20E-04		
IBS horizontal [h] 80 -> 106 20.0 20.7 IBS longitudinal [h] 61 -> 60 15.8 13.2 Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	IBS horizontal [h] $80 \rightarrow 106$ 20.0 20.7 IBS longitudinal [h] $61 \rightarrow 60$ 15.8 13.2 Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP $3.10E-03$ $3.9E-03$ $5.0E-03$ Peak Luminosity 110^{34} 9.010^{34} 9.010^{34}	bunch length [m]	7.50E-02	7.50E-02	7.50E-02		
Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	Piwinski parameter 0.68 2.54 2.66 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴		80 -> 106	20.0	20.7		
geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	IBS longitudinal [h]	61 -> 60	15.8	13.2		
beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴	Piwinski parameter	0.68	2.54	2.66		
Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴ Is beams	Peak Luminosity 1 10 ³⁴ 9.0 10 ³⁴ 9.0 10 ³⁴ Is bea	geom. reduction	0.83	0.37	0.35		
is beams	is bea	beam-beam / IP	3.10E-03	3.9E-03	5.0E-03		
		Peak Luminosity	1 10 ³⁴	9.0 10 ³⁴	9.0 10 ³⁴		
Events / crossing 19 171 340 LHC-typ	Events / crossina 19 171 340 LHC-i]	
		Events / crossing	19	171	340		}LHC-typ€

B. Goddard, HL-LHC/LIU Day, 30 March 2012

25 ns	PSB i	nj l	PSB extr/PS	r/PS inj PS extr/SPS in			• Space charge in the P						
Energy GeV		0.16	0.16 2				(∆Q>0.36) ?		000				
Nb		1		1			Space charge $(\Delta Q > 0.28)$?	in the PS	308 2.2				
lb [e11 p+]		35.2	~	33.5			ΔQ-0.20] :		2.2				
Ib in LHC [e11 p	+]	2.9		2.8		2.7	2.4		2.2				
Exyn (mm.mrad	4]	1.9		2.0		2.1	2.3		2.5				
50 ns	PSB i	nj f	PSB extr/PS	inj I	PS extr/SPS in	nj SF	PS extr/LHC inj	LHC top					
Energy GeV		0.16		2	-	26	450		7000				
Nb		1		1		36	144	,	1404				
lb [e11 p+]	•	Longitudin	al instabil	ities		4.2	3.9		3.5				
lb in LHC [e11 p	+]	in the PS?				4.2	3.9		3.5				
Exyn (mm.mrad	1] •	Space char		SPS		2.5	2.7		3.0				
		(∆Q>0.15)	?				1						
	_			PSB	PS	SP	S LHC						
		loss	%	5	5	10	10						
		blowu	ւթ %	5	5	10	10						

B. Goddard, HL-LHC/LIU Day, 30 March 2012

25 ns	PSB inj	PSB extr/	PS inj PS	extr/SPS in	nj SPS e	xtr/LHC inj	LHC top						
Energy GeV		0.16	2		26	450)	7000					
Nb	 Snace (harge in the PS	R PS SP	S (accen	table Λ))	`	2808					
lb [e11 p+]		Space charge in the PSB, PS, SPS (acceptable ΔQ)											
lb in LHC [e		→ Do we fully understand the effects and do we have simulation tools (benchmarked with our machines) for predictions ?											
Đơyn (mm.		Longitudinal instabilities in the PS											
50 ns	Longitudinal instability and TMCI in the SPS												
Energy Ge ^v		\rightarrow Is Q20 optics enough to raise these thresholds above the											
Nb		requested values?											
lb [e11 p+]	• Electro	Electron cloud effects with larger intensity (PS & SPS)											
lb in LHC [e	\rightarrow Car	\rightarrow Can we rely on scrubbing or do we need coating ?											
Exyn (mm.	\rightarrow Hig	h bandwidth tran	sverse fee	edback sy	stem ?			3.0					
			PSB	PS	SPS	LHC							
		loss %	5	5	10	10							
		blowup %	5	5	10	10							

ÉRN	Jan	20)12 M	Ds	Feb	ı	LINA sta		ст	F start	Mar	Beam availabl to LHC \		CNGS TOF 54	8	ъĐ		to b	art w eam	ith
Wk	1	2	3	4	5	6		7	Γ	8	9	10	\backslash	11			12		13	
Мо		2	9 1	6 23	30	Б		13		¥ 2D	27	5	1	1	12		19	Ł		26
Tu																				
We					01-Feb					(crubbi	ing
Th											Setup with beam								run	
Fr					SPS closed	PSB/PS closed		·			PSB, PS, SPS				¥	•	,			
Sa								Machine Theckout											+	1
Su																				

	Start ISOL Physics	DE I	East I Sta	Hall art	Start AD Physics		orth Area hysics			June		Start source/I		
Wk	14	15		16	17	18	19	20	21	22	23	24	25	26
Мо	*	2 Easter Mon	•	16	Injector MD	30	¥ ,	14	21	Whit 28	4	+	11 18	Injector MD
Tu					[24 h] Injector	1st May			Injector MD					[24 h]
We					TS [24 h] Injector MD				[24 h]		Injector MD [24 h]			Injector TS [48 h]
Th					[24 h]			Ascension			[24 n]			MD (& UA9)
Fr	G. Friday				+									[24 h]
Sa														
Su														

More than half-way through the 2012 run

☑ 5-days scrubbing run

•

- **3** blocks of fully dedicated MDs
- ☑ 8 blocks of floating MDs (sometimes split into 12h blocks)

LHC Injectors Upgrade

How much time is left ✓ 3 blocks of floating MDs ✓ 96h (4 blocks) of floating MDs to be rearranged (LHC TS will not take place) ✓ Restore the weekly 12h MDs on Wednesdays to optimize use of time for users

- ✓ Can we still use some MD time in 2013 during the p-Pb LHC run?
- ☑ Parallel MDs will continue in all injectors

End non-LHC

								_	to NA	proton ph (tbs)	vsics CT	F sto	06: 06	A stop oo)
	Oct				Nov				\	Dec				
Wk	40	41	42	43	44	45	46	47	48	49	50		51	52
Мо	٦	8	15	22	29	ITS (12 h)	12	19	26		3	10		7 24
Tu														Xmas
We	Injector MD [24 h]		UA9 MD			Injector MD (72 h)				lons to	North Area			
Th			[24 h] Injector MD											
Fr			[24 h]			Injector MD [24 h]						¥	TEC	HNICAL
Sa														5TOP
Su														

PSB intensity limitations

• LHC beams presently not limited by these effects

From MSWG meeting, 17 February 2012

LIU-PSB activities in 2012 (RF, hardware)

Continue deployment of the digital RF control Test the newly installed Finemet prototype cavity hardware

LIU/Beam dynamics/performance MDs

- Parametric dependence of the transverse instabilities and identification of the impedance source, importance of the damper
- Determine resonance diagram with tune scans at 160 MeV to optimize placement of working point at injection with Linac4
- Optics model based on turn-by-turn data from the available BPMs
- Study the efficiency of the resonance compensation schemes
- Space charge induced emittance blow up
- Capture and acceleration in h=2
- Equalization of transverse emittances across rings
- Bunch lengthening at top energy for PSB-PS transfer (in view of 2GeV)

PSB in 2012

From MSWG meeting, 17 February 2012

LIU-PSB activities in 2012 (RF, hardware)

- Continue deployment of the digital RF control
 Test the newly installed Finemet prototype cavity hardware
- LIU/Beam dynamics/performance MDs
- Parametric dependence of the transverse instabilities and identification of the impedance source, importance of the damper
- Determine resonance diagram with tune scans at 160 MeV to optimize placement of working point at injection with Linac4
- Optics model based on turn-by-turn data from the available BPMs
- Study the efficiency of the resonance compensation schemes
- Space charge induced emittance blow up (effect of working point)
- Capture and acceleration in h=2

 \bigcirc

- Equalization and **optimization** of transverse emittances across rings
 - Bunch lengthening at top energy for PSB-PS transfer (in view of 2GeV)

PS intensity limitations

PS MDs in 2012

From MSWG meeting, 17 February 2012

LIU PS machine studies requested in 2012

- Space charge studies: is 0.26 the limit for the PS?
- Additional feedback against longitudinal CBI (should extend the intensity reach for 50 and 25ns beams!)
- Batch compression h=9 \rightarrow 10 \rightarrow 20 \rightarrow 21, acceleration, transfer to SPS
- Batch compression + bunch merging scheme
- One-turn feedback against transient beam-loading
- Electron cloud measurements in presence of B field and with double step bunch rotation
- PS-SPS transfer studies (SPS capture loss maps as a function of PS bunch rotation timings)
- Commissioning of transverse feedback system
- Head-tail instabilities on the flat bottom
- Transverse instabilities of short intense bunches at flat top
- Impedance identification for modeling
- Miscellaneous injection studies and optics model at different energies
 - Tuning of working point from injection in 5 CM
 - Tests of low energy elements
 - Acceleration-deceleration for double batch transfer

PS MDs in 2012

LHC Injectors Upgrade

From MSWG meeting, 17 February 2012

LIU PS machine studies requested in 2012

- Space charge studies: is 0.26 the limit for the PS? Integer crossing
- Additional feedback against longitudinal CBI (should extend the intensity reach for 50 and 25ns beams!)
- Batch compression h=9 \rightarrow 10 \rightarrow 20 \rightarrow 21, acceleration, transfer to SPS/LHC
- Batch compression + bunch merging scheme
- One-turn feedback against transient beam-loading
- Electron cloud measurements in presence of B field and with double step bunch rotation
- PS-SPS transfer studies (SPS capture loss maps as a function of PS bunch rotation timings)
- Commissioning of transverse feedback system @injection
- Head-tail instabilities on the flat bottom
- Transverse instabilities of short intense bunches at flat top
- Impedance identification for modeling (transverse & longitudinal)
- Miscellaneous injection studies and optics model at different energies
 - Tuning of working point from injection in 5 CM
 - Tests of low energy elements

- South hall
- Acceleration deceleration for double batch transfer

SPS intensity limitations

SPS MDs in 2012

From MSWG meeting, 17 February 2012

- 2012 electron cloud studies

Scrubbing in W13 and e-cloud MD sessions

- \rightarrow Qualification of 25ns beams
- → Interpretation of the pressure data
- → Testing efficiency of scrubbing with uncaptured beam
- → Monitor and qualify beam induced scrubbing under different beam/chamber conditions (beam observables, direct electron cloud observables)
- → Validate simulation models on scrubbing times (like for LHC)
- \rightarrow New setups for validation of a-C coating

Other LIU SPS machine studies in 2012

- Q20 optimization
 - Longitudinal stability and quality at extraction
 - ✓ Injection tests into LHC
 - Transverse emittance preservation and single bunch limits
 - ✓ Nonlinear optics model
 - ✓ Instabilities (TMCI, ECI)
 - ✓ Extension of Q20 to fixed target physics cycles
- ZS studies
- Tests with increased peak RF power
- High bandwidth feedback studies (close feedback loop and prove damping of head-tail modes)
- Impedance identification

SPS MDs in 2012

From MSWG meeting, 17 February 2012

7 2012 electron cloud studies

Scrubbing in W13 and e-cloud MD sessions

- \rightarrow Qualification of 25ns beams
- → Interpretation of the pressure data
- \rightarrow Testing efficiency of scrubbing with uncaptured beam
- → Monitor and qualify beam induced scrubbing under different beam/chamber conditions (beam observables, direct electron cloud observables)
- → Validate simulation models on scrubbing times (like for LHC)
- \rightarrow New setups for validation of a-C coating

- Other LIU SPS machine studies in 2012

• Q20 optimization (single and multi-bunch!)

- Longitudinal stability and quality at extraction (also for Q26 high intensity)
- Injection tests into LHC
- Transverse emittance preservation and single bunch limits
- Nonlinear optics model
- ✓ Instabilities (TMCI, ECI)
- Extension of Q20 to fixed target physics cycles
- ZS studies
- Tests with increased peak RF power
- High bandwidth feedback studies (close feedback loop and prove damping of head-tail modes)
- Impedance identification

Most of the requested LIU MDs in PSB/PS/SPS have progressed significantly in 2012 and status will be reviewed in the next talks

– PSB

- \rightarrow LHC beams performance and optimization (B. Mikulec)
- \rightarrow RF and transverse feedback aspects (A. Findlay)
- \rightarrow Space charge effects (A. Molodozhentsev)

– PS

- \rightarrow Space charge limit at injection (R. Wasef)
- → Transverse studies (S. Gilardoni)
- \rightarrow Longitudinal studies, alternative schemes (H. Damerau)

- SPS

- \rightarrow Q20 single and multi-bunch operation (H. Bartosik)
- → Electron cloud studies: coating vs. scrubbing (G. ladarola)
- \rightarrow Longitudinal beam stability & quality (T. Argyropoulos)
- \rightarrow High bandwidth transverse feedback system (W. Höfle)

LHC Injectors Upgrade

Some key questions (that will be addressed today)

- Are we on the right path to provide LHC with the required beams at the different stages (post-LS1, post-LS2)?
- Which studies will still require more information and significant MD time before LS1?
- Is any study presently limited by instrumentation or diagnostics? Any improvement possible before LS1?
- Is any study strongly relying on the installation and test of new hardware before LS1?
- How can we optimize the use of the remaining available MD time? Do we need to request for more?
- Which are the main motivations why we could benefit from the extension of the MD run into 2013?

•••

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

