

LHC Injectors Upgrade

LHC Injectors Upgrade

Space charge studies at 160MeV in the CERN PS Booster

Alexander Molodozhentsev (KEK) On behalf of the CERN Space-charge Group In collaboration with the PSB control team and the RF team

CERN Space Charge Group

Group manager	Frank Schmidt	
PS Booster	Vincenzo Forte Michel Martini Elena Benedetto Nicolas Mounet Christian Carli	
PS	Raymond Wasef Cedric Hernalsteens Simone Gilardoni	
SPS	Hannes Bartisik	
'RCS' design	Miriam Fitterer Christian Carli	

Outline

- Motivations for PSB MD at 160MeV
- PS Booster MD for the PTC-ORBIT code benchmarking
 - \circ Computational tools \rightarrow PTC-ORBIT code
 - *Resonance observations for PSB at 160MeV*
 - PTC-ORBIT benchmarking results
 - Extreme space-charge detuning (first attempt)
- Basic plan for nearest Mds

Summary

Motivations for PSB MD at 160MeV

- LINAC2 (p⁺ 50MeV) → LINAC4 (h⁻ 160MeV)
- PS Booster → W_{inj} = 160 MeV
 - ... very confident to run with $\Delta Q_y \approx -0.3$ (and reasonable hope for $\Delta Q_y \approx -0.36$)
- **PS** \rightarrow **W**_{inj} = 2 GeV
 - ... very confident to run with $\Delta Q_y \approx$ -0.26 (with reasonable hope for $\Delta Q_y \approx$ -0.30 with 180nsec long bunches)
- SPS (Q20 lattice)
 - ... present assumption is to run with $\Delta Q_{\gamma} \approx$ -0.15
 - ... need to increase $\Delta Q_{v} \approx -(0.20 \dots 0.25)$

25 ns	PSB inj	PSB	extr/PS inj	PS extr/SPS inj	SPS extr/LHC inj	LHC top
Energy GeV		0.16	2	26	450	7000
Nb		1	1	72	288	2808
lb [e11 p+]		35.2	33.5	2.7	2.4	2.2
Ib in LHC [e1	1 p+]	2.9	2.8	2.7	2.4	2.2
Exyn (mm.m	irad]	1.9	2.0	2.1	2.3	2.5

 $B_{f} = 0.4 \rightarrow \Delta Q_{y} \approx -0.25$ $B_{f} = 0.3 \rightarrow \Delta Q_{y} \approx -0.37$

Motivations for PSB MD at 160MeV

LHC25 beam

- Moderate space-charge detuning (△Q_y ≈ -0.25)
 - → check the estimated space-charge detuning
 - \rightarrow observation the INTEGER and MONTAGUE resonances
 - \rightarrow benchmarking the measured and simulated emittance evolution
 - → effect of the linear coupling resonance [1,-1,0]
- Extreme space-charge detuning (△Q_y ≈ -0.40) → LOW-loss operation at the energy 160MeV

PS Booster: MD for the code benchmarking

- 'LONG' bunch ... h=1, 'ANTI' phase (8kV+4kV) B_f = 0.40, № ~ (150÷170)×10¹⁰
 - $B_f = 0.40, M_b = (100.170) \times 10^{-1}$

'SHORT' bunch ... h=1, 'IN' phase (8kV+8kV)

$B_f = 0.241, N_b \sim (150 \div 170) \times 10^{10}$

... with Steven Hancock

\rightarrow Taken into account the space charge effect in the longitudinal plane

~ 2.8 turns MT injection

Horizontal profile: 'IN' scan Vertical profile: 'IN' scan

Single bunch intensity $\rightarrow \sim 165 \times 10^{10} \text{ ppb}$

Normalized 1σ Emittance H $\rightarrow \sim 3.4\pi$ mm.mrad V $\rightarrow \sim 1.8\pi$ mm.mrad

 $Q_x = 4.23$ $Q_y = 4.42$

Estimation: $B_f = 0.25 \rightarrow \Delta Q_v$ (Laslett) ~ -0.4

Computational tools

PTC(MADX)-ORBIT code, developed in collaboration of KEK and SNS.

Main features of the code:

- common environment for the single particle and multi particle dynamics, including the collective effects (space-charge, impedance and e-clodes);
- dynamic variation of the machine elements (magnets and RF systems).

The code has been compiled for the CERN lxplus cluster.

Convergence study has been performed for the LHC type beam to define the optimum set of the basic parameters for the space-charge model (2.5D), implemented into the ORBIT(MPI) code.

PSB MD: resonance observations at 160MeV

PSB MD: resonance observations at 160MeV

PTC-ORBIT benchmarking results

Simulations - Beam characteristics - transverse

-0.1889E-14 5.8138 -0.22351e-3 4.2509

-5.7985e-4 5.805 -7.7873e-4 4.2485

ex (1 sigma - normalized) ~ 4.7235 mm-mrad

ey (1 sigma - geometrical) ~ 2.3392 mm-mrad

BetaGamma = 0.614

0 500 1000 1500

2D gaussian distribution

Profiles comparison - measured and simulated

αγ

βγ

βx

Lattice (PTC)

500e3 (Matlab post p.)

x [mm]

Dx

-1.5215

-1.5238

o y [mm]

MD - Beam characteristics – longitudinal

- Long bunch B.f. ~0.39
- RMS emittance = 0.161 eVs
- RMS ∆p/p = 1.33e-3

Simulations - Beam characteristics - longitudinal

PTC-ORBIT benchmarking results

Effect of [1,0,4] resonance

W_{kin} = 160MeV

<u>LHC25 beam</u> $B_f \sim 0.4$ $Q_x = 4.10 / Q_y = 4.21$

#0 → measurements #1 → ideal lattice

#2, #3 → lattice with RANDOM errors {δK1}_{QM}
#2 : 1Sigma = 1.0×10⁻³ (relative value)
#3 : 1Sigma = 5.0×10⁻³
Gaussian generator (no cut)

Courtesy V.Forte

Acceptable agreement between experimental data and simulation results (LHC25 beam)

Maximum random error of the PSB quadrupole magnets ~ $1.0 \times 10^{-3} (1\sigma)$

PTC-ORBIT benchmarking results

PSB MD: resonance observations at 160MeV

WITH resonance compensation

MD: extreme space-charge detuning △Qy ≈ -0.4 (LHC25 beam)

Estimated incoherent space-charge detuning

 \rightarrow Observation at 160MeV: losses < 1%

MD: extreme space-charge detuning △Qy ≈ -0.4 (LHC25 beam)

B_f = 0.241, N_b = 149×10¹⁰

WITH resonance compensations, used for the PSB operation ...

B_f = 0.241, N_b = 149×10¹⁰

 \rightarrow observations should be reproduced by the simulations ...

Basic plan for nearest PSB MDs

- Tune scan at 160MeV for different space charge detuning by using the LHC25 type beam ...
- Observation of the emittance evolution at the 50MeV energy including existing schemes of the resonance compensation to collect information for further simulations...

Summary

- Effects of INTEGER and Montague resonances at the 160MeV energy has been investigated experimentally to collect data for benchmarking the PTC-ORBIT code.
- Benchmarking the PTC-ORBIT code demonstrates acceptable agreement with the beam observations for the moderate spacecharge detuning (V: -0.25).
- The first attempt to use the 'extreme' space charge detuning at the 160MeV energy indicates some promising possibility to reach the space charge detuning of (V: -0.4) with limited emittance blow-up and acceptable particle losses.

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

