Space charge studies at 160MeV in the CERN PS Booster

Alexander Molodozhentsev (KEK)
On behalf of the CERN Space-charge Group
In collaboration with the PSB control team and the RF team
CERN Space Charge Group

<table>
<thead>
<tr>
<th>Group manager</th>
<th>Frank Schmidt</th>
</tr>
</thead>
</table>
| **PS Booster** | Vincenzo Forte
| | Michel Martini
| | Elena Benedetto
| | Nicolas Mounet
| | Christian Carli |
| **PS** | Raymond Wasef
| | Cedric Hernalsteens
| | Simone Gilardoni |
| **SPS** | Hannes Bartisik |
| **‘RCS’ design** | Miriam Fitterer
| | Christian Carli |
Outline

- Motivations for PSB MD at 160MeV
- PS Booster MD for the PTC-ORBIT code benchmarking
 - Computational tools → PTC-ORBIT code
 - Resonance observations for PSB at 160MeV
 - PTC-ORBIT benchmarking results
 - Extreme space-charge detuning (first attempt)
- Basic plan for nearest Mds
- Summary
Motivations for PSB MD at 160MeV

- LINAC2 (p+ 50MeV) → LINAC4 (h- 160MeV)
 ... very confident to run with \(\Delta Q_y \approx -0.3 \) (and reasonable hope for \(\Delta Q_y \approx -0.36 \))
- PS Booster \(\rightarrow W_{\text{inj}} = 160 \) MeV
 ... very confident to run with \(\Delta Q_y \approx -0.26 \) (with reasonable hope for \(\Delta Q_y \approx -0.30 \) with 180nsec long bunches)
- SPS (Q20 lattice)
 ... present assumption is to run with \(\Delta Q_y \approx -0.15 \)
 ... need to increase \(\Delta Q_y \approx -(0.20 \ldots 0.25) \)

<table>
<thead>
<tr>
<th>25 ns</th>
<th>PSB inj</th>
<th>PSB extr/PSB inj</th>
<th>PS extr/SPS inj</th>
<th>SPS extr/SPS inj</th>
<th>SPS extr/LHC inj</th>
<th>LHC top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy GeV</td>
<td>0.16</td>
<td>2</td>
<td>26</td>
<td>450</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>1</td>
<td>1</td>
<td>72</td>
<td>288</td>
<td>2808</td>
<td></td>
</tr>
<tr>
<td>Ib [e11 p+]</td>
<td>35.2</td>
<td>33.5</td>
<td>2.7</td>
<td>2.4</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Ib in LHC [e11 p+]</td>
<td>2.9</td>
<td>2.8</td>
<td>2.7</td>
<td>2.4</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Exyn [mm.mrad]</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.3</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

\[B_f = 0.4 \rightarrow \Delta Q_y \approx -0.25 \]
\[B_f = 0.3 \rightarrow \Delta Q_y \approx -0.37 \]
Motivations for PSB MD at 160MeV

LHC25 beam

- Moderate space-charge detuning \((\Delta Q_y \approx -0.25)\)
 - check the estimated space-charge detuning
 - observation the INTEGER and MONTAGUE resonances
 - benchmarking the measured and simulated emittance evolution
 - effect of the linear coupling resonance [1,-1,0]

- Extreme space-charge detuning \((\Delta Q_y \approx -0.40)\)
 - LOW-loss operation at the energy 160MeV
PS Booster: MD for the code benchmarking

\[Q_y = 4.42 \]
\[Q_x = 4.225 \]
\[160 \text{ MeV} \]
\[50 \text{ MeV} \]

Beam profile (Wire-scan...at T ~ 10 shots)

\[Q_y = 4.42 \]
\[\sim 600 \text{ ms} \]
\[\sim 450 \text{ ms} \]

\[B_I = 0.40, N_0 \sim (150+170) \times 10^{10} \]

\[B_I = 0.241, N_0 \sim (150+170) \times 10^{10} \]

\[\text{SHORT} \] bunch ... h=1, \text{‘IN’ phase (8kV+8kV)}

\[\text{LONG} \] bunch ... h=1, \text{‘ANTI’ phase (8kV+4kV)}

\[\rightarrow \text{Taken into account the space charge effect in the longitudinal plane} \]

\[\sim 2.8 \text{ turns MT injection} \]

Horizontal profile: ‘IN’ scan
Vertical profile: ‘IN’ scan

Single bunch intensity
\[\rightarrow \sim 165 \times 10^{10} \text{ ppb} \]

Normalized 1\(\sigma \) Emittance
\[H \rightarrow \sim 3.4\pi \text{ mm.mrad} \]
\[V \rightarrow \sim 1.8\pi \text{ mm.mrad} \]

\[Q_x = 4.23 \]
\[Q_y = 4.42 \]

\[\text{Estimation: } B_I = 0.25 \rightarrow \Delta Q_y (\text{Laslett}) \sim -0.4 \]
Computational tools

PTC(MADX)-ORBIT code, developed in collaboration of KEK and SNS.

Main features of the code:
- common environment for the single particle and multi particle dynamics, including the collective effects (space-charge, impedance and e-clodes);
- dynamic variation of the machine elements (magnets and RF systems).

The code has been compiled for the CERN lxplus cluster.

Convergence study has been performed for the LHC type beam to define the optimum set of the basic parameters for the space-charge model (2.5D), implemented into the ORBIT(MPI) code.
PSB MD: resonance observations at 160MeV

`LHC25' type beam

Q_x = 4.10, Q_y = 4.21

B_r \sim 0.40, \ N_b \sim 170 \times 10^{10}
N_{\text{int}} = 2.8
\varepsilon_{\text{H}} \text{ (norm)} \sim 3.4 \pi \text{ mm.mrad}
\varepsilon_{\text{V}} \text{ (norm)} \sim 1.8 \pi \text{ mm.mrad}

~ 50 msec

Effect of the INTEGER resonance Q_x = 4 (systematic)

LHC25 type beam (B_r = 0.40)

Q_x = 4.10, Q_y = 4.21

Footprint after 1000 turns

PTC-ORBIT

Q_x = 4

Maximum detuning:
\Delta Q_H = -0.16
\Delta Q_V = -0.24
PSB MD: resonance observations at 160MeV

'LHC25' type beam

Effect of the Montague resonance $2Q_x - 2Q_y = 0 \rightarrow$ FIRST trial

$B_r \sim 0.40, N_2 \sim 170 \times 10^{10}$
$N_{\text{proj}} = 2.8$
$\delta_x (\text{norm}) \sim 3.4 \pi \text{ mm.mrad}$
$\delta_y (\text{norm}) \sim 1.8 \pi \text{ mm.mrad}$

$W_{\text{proj}} = 160 \text{ MeV}$
$LHC25 \text{ beam}$
$B_r \sim 0.4$
$Q_x = 4.18 / Q_y = 4.23$

$2Q_x - 2Q_y = 0$

PTC-ORBIT

Alexander Molodozhentsev (KEK), LIU Beam Study Review, August 28, 2012, CERN
PTC-ORBIT benchmarking results

MD - Beam characteristics – longitudinal
- h=1 - double harmonic RF +8kV & +4kV in antiphase
- Long bunch ~ B.f. ~0.39
- RMS emittance = 0.161 eVs
- RMS Δp/p = 1.33e-3

Simulations - Beam characteristics – transverse

Simulations - Beam characteristics – longitudinal
- 500e3 m.particles
- Long bunch ~ B.f. ~0.39
- RMS emittance ~ 0.16 eVs
- RMS Δp/p ~ 1.33e-3

Thanks to Alexander for the longitudinal distribution

Profiles comparison – measured and simulated
PTC-ORBIT benchmarking results

Effect of [1,0,4] resonance

$LHC25 \text{ beam}$

$W_{\text{kin}} = 160\text{MeV}$

$B_z \sim 0.4$

$Q_x = 4.10 / Q_y = 4.21$

#0 \rightarrow measurements

#1 \rightarrow ideal lattice

#2, #3 \rightarrow lattice with RANDOM errors $\{\delta K1\}_\text{QM}$

#2: 1Sigma $= 1.0 \times 10^{-3}$ (relative value)

#3: 1Sigma $= 5.0 \times 10^{-3}$

Gaussian generator (no cut)

Acceptable agreement between experimental data and simulation results (LHC25 beam)

Maximum random error of the PSB quadrupole magnets $\sim 1.0 \times 10^{-3}$ (1\(\sigma\))
PTC-ORBIT benchmarking results

Effect of the Montague resonance [2,-2,0]

- #0 → measurements
- #1 → ideal lattice
- #2, #3 → lattice with RANDOM TILT of {QM}
- #2: 1Sigma = 2.17×10^{-6} rad
- #3: 1Sigma = 4.28×10^{-6} rad

Gaussian generator (no cut)

Courtesy V.Forte
PSB MD: resonance observations at 160MeV

MD: extreme space-charge detuning
\[\Delta Q_y \approx 0.4 \text{ (LHC25 beam) } \]

WITH resonance compensation

\[Q_x = 4.23 \]
\[Q_y = 4.42 \]

~ 460ms ~ 600ms

Estimated incoherent space-charge detuning

\[\rightarrow \text{ Observation at 160MeV: losses < 1%} \]
PSB MD: resonance observations at 160MeV

MD: extreme space-charge detuning $\Delta Q_y \approx -0.4$ (LHC25 beam)

$B_r = 0.241, N_b = 149 \times 10^{10}$

WITH resonance compensations, used for the PSB operation ...

→ observations should be reproduced by the simulations …
Basic plan for nearest PSB MDs

- Tune scan at 160MeV for different space charge detuning by using the LHC25 type beam …

- Observation of the emittance evolution at the 50MeV energy including existing schemes of the resonance compensation to collect information for further simulations…
Summary

• Effects of INTEGRER and Montague resonances at the 160MeV energy has been investigated experimentally to collect data for benchmarking the PTC-ORBIT code.

• Benchmarking the PTC-ORBIT code demonstrates acceptable agreement with the beam observations for the moderate space-charge detuning (V: -0.25).

• The first attempt to use the 'extreme' space charge detuning at the 160MeV energy indicates some promising possibility to reach the space charge detuning of (V: -0.4) with limited emittance blow-up and acceptable particle losses.
THANK YOU FOR YOUR ATTENTION!