LHC Injectors Upgrade
PS: the Longitudinal Plane

H. Damerau, S. Hancock

LIU Beam Studies Review Meeting

28 August 2012

Many thanks to H. Bartosik, T. Bohl, A. Findlay, S. Gilardoni, G. Metral, M. Migliorati, B. Mikulec, M. Paoluzzi, D. Perrelet, S. Persichelli, C. Rossi, E. Shaposhnikova, H. Timkö, PSB, PS and SPS Operations Teams, ...
Overview

• Introduction
 • Impedance studies
 • Coupled-bunch and 1-turn delay feedbacks
 • Alternative production schemes of LHC beams
 • Performance reach after LS1
 • Longitudinal transfer PS-SPS

• Summary
Overview

• Introduction

• Impedance studies
 • Coupled-bunch and 1-turn delay feedbacks
 • Alternative production schemes of LHC beams
 • Performance reach after LS1
 • Longitudinal transfer PS-SPS

• Summary
Broadband impedance measurements (1/2)

First MD session on 10/05/12:

$$\frac{f_{2s}}{f_{s0}} = 2 + \frac{12eN_p}{V_{RF}h \cos \phi_s \omega_0^2 \tau_b^3} \frac{Im[Z(p)]}{p}$$

$$Z(p)/p = (17.6 \pm 3.6) \, \Omega$$

Broadband Longitudinal Impedance from Incoherent Quadrupole Frequency Measurements (2001)

$$|Z/n| \approx (21.7 \pm 5.1) \, \Omega$$

MEASUREMENTS OF THE PS LOW-FREQUENCY INDUCTIVE BROAD-BAND IMPEDANCE

R. Cappi, M. Giovannoni, E&G. Metral, R. Steerenberg
J. Bento, R. Garoby, S. Hancock, J.L. Vallet

Measurements in 2000 \Rightarrow \text{Good agreement between the 3 methods}

In agreement with the measurements done in the past

Im[$Z_{bb}^Z(p)/p$] \approx 20 \, \Omega

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012
Second MD session on 13/06/12:

\[\frac{f_{2s}}{f_{s0}} = 2 + \frac{12eN_p}{V_{RF} h \cos \phi_s \omega_0^2 \tau_b^3} \frac{Im[Z(p)]}{p} \]

- Combined result:
 \[Z(p)/p = (18.4 \pm 2.2) \Omega \]

- Reproducible

→ Reference for measurements after LIU installations
Comparison with theoretical model

- Theoretical impedance budget including kickers, cavities, pumping ports, step transitions of beampipe, etc.

→ Excellent agreement of measured impedance with model
→ No further MD time required before LS1
Broadband impedance studies

<table>
<thead>
<tr>
<th>#</th>
<th>Subject</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Broad-band impedance measurement (quadrupole BTF, using C40-78)</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>Re-measure #1 as independent crosscheck (using C40-77)</td>
<td>✔</td>
</tr>
</tbody>
</table>

→ Broad-band impedance studies completed
→ Reference point for later measurements

- **Completed**
- **Ongoing**
- **To be done before LS1**
Overview

• Introduction

• Impedance studies

• **Coupled-bunch and 1-turn delay feedbacks**

• Alternative production schemes of LHC beams

• Performance reach after LS1

• Longitudinal transfer PS-SPS

• Summary
Kick strength of PS coupled-bunch FB

- Present coupled-bunch feedback acts on 10 MHz cavities C86/96
- Generates RF voltage at \((h-1) \cdot f_{\text{rev}}\) and \((h-2) \cdot f_{\text{rev}}\) far away from cavity resonance

→ New Finemet-based wide-band kicker cavity installed during LS1

→ LHC25ns (for scrubbing): intensity \(1.75 \cdot 10^{11}\) ppb at extraction with nominal \(\varepsilon_l\)

→ Independent crosscheck of FB signals at drive summing point OK
Spectral components at $h = 19$ and 20

Offset from I/Q modulators
Results of preliminary studies

• Effective kick strength of the order of ~ 0.5 kV per mode for 25 ns beam with an intensity of 1.75 \cdot 10^{11} \text{ ppb} \rightarrow to be checked

• Unwanted carrier leakage from existing feedback already observed earlier
 \rightarrow Offset problem with up-conversion mixers identified

\rightarrow Present work hypothesis: Damper cavity dimensioned for 5-6 simultaneous harmonics from 0.4 to 5.5 MHz with an amplitude of ~ 1 kV each

• Feed-forward beam compensation studies independent from LS1
 \rightarrow Collaboration with KEK

Mauro Paoluzzi

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012
Coupled-bunch feedback studies

<table>
<thead>
<tr>
<th>#</th>
<th>Subject</th>
<th>Completed</th>
<th>Ongoing</th>
<th>To be done before LS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adjustment of coupled-bunch (CB) feedback modulator offsets</td>
<td>✔/ ✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Coupled-bunch measurements with 100 ns beam</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Measurement of kick voltages of CB feedback</td>
<td>✔/ ✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Use spare cavity C10-11 as CB feedback kicker, high density acceleration</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Show damping with detection at $h_{FB} = 1 + 2$ and kick at $h_{FB} = 20 + 19$</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Check stability with C10-11 introducing synchrotron spread</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ Still important studies to be performed before LS1: #4 - #6

→ Beginning of 2013 ideal period for #4 since CB-FB not required for high-intensity LHC beam production anymore
Impedance and 1-turn feedback studies

- Fully digital 1-turn feedback prototype, based on LHC 1-turn FB

Beam induced spectrum on cavity return signal along cycle (TOF)

→ Excellent result: prototype already better than operational system
→ Validate series version board in Q1/2013?
→ Full installation on all 10 MHz cavities during LS1

Damien Perrelet
New 1-turn feedbacks

<table>
<thead>
<tr>
<th>#</th>
<th>Subject</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Test of new 1-turn feedback on 10 MHz test cavity (no beam)</td>
<td>Completed</td>
</tr>
<tr>
<td>4</td>
<td>Test of new 1-turn feedback on spare cavity C10-11 (with beam)</td>
<td>Completed</td>
</tr>
<tr>
<td>5</td>
<td>Full validation of 1-turn feedback prototype with beam</td>
<td>Ongoing</td>
</tr>
<tr>
<td>6</td>
<td>Test of I/Q modulator/demodulator for 1-turn feedback 20/40/80 MHz</td>
<td>To be done</td>
</tr>
</tbody>
</table>

- Full validation of 10 MHz 1-turn feedback prototype ongoing
- Validate pre-series version with beam before LS1
- Modulator/demodulator test depends on availability of prototype hardware
Overview

• Introduction

• Impedance studies

• Coupled-bunch and 1-turn delay feedbacks

• Alternative production schemes of LHC beams

• Performance reach after LS1

• Longitudinal transfer PS-SPS

• Summary
Alternative schemes from PSB and PS

- **Ideas for schemes with increased brightness in 2003** (Garoby et al.)
- **Chamonix 2011: alternative RF manipulations** (Carli, Garoby)

 [Link to slides](http://indico.cern.ch/getFile.py/access?contribId=26&sessionId=8&resId=3&materialId=slides&confId=103957)

- **Chamonix 2012: first measurements and expected performance**

 [Link to slides](https://indico.cern.ch/getFile.py/access?contribId=41&sessionId=6&resId=1&materialId=slides&confId=164089)

- **140th LMC: First higher brightness 50 ns variant ready for LHC**

 [Link to presentation](https://espace.cern.ch/lhc-machine-committee/Presentations/1/lmc_140/lmc_140g.pdf)

Bunch intensity to SPS/LHC (no losses in PS/SPS) per bunch from PSB:

<table>
<thead>
<tr>
<th>PS RF manipulation scheme</th>
<th>25 ns bunch spacing</th>
<th>50 ns bunch spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triple splitting</td>
<td>$N_{PSB} / 12$ in 72 b</td>
<td>$N_{PSB} / 6$ in 36 b</td>
</tr>
<tr>
<td>2. Batch compression + double split</td>
<td>$N_{PSB} / 8$ in 64 b</td>
<td>$N_{PSB} / 4$ in 32 b</td>
</tr>
<tr>
<td>3. Batch comp. + merge + triple split</td>
<td>$N_{PSB} / 6$ in 48 b</td>
<td>$N_{PSB} / 3$ in 24 b</td>
</tr>
<tr>
<td>4. Pure batch compression</td>
<td>$N_{PSB} / 4$ in 32 b</td>
<td>$N_{PSB} / 2$ in 16 b</td>
</tr>
</tbody>
</table>
Batch comp. + split: $h = 9 \rightarrow 10 \rightarrow 20 \rightarrow 21$

- Suggested in Chamonix 2011 as option to produce higher intensity or higher brightness per bunch for LHC, first beam tests in PS in 2011

16 bunches at start of acc.
→ 32 bunches, 50 ns @ extraction

<table>
<thead>
<tr>
<th></th>
<th>25 ns</th>
<th>50 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splitting ratio PS ejection/injection</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Batch length from PS</td>
<td>64</td>
<td>32</td>
</tr>
</tbody>
</table>

✓ New hardware commissioned
✓ Double-batch injection
✓ Top energy RF manipulations
✓ Delivered to SPS and LHC
✓ Positive operational experience from 100 ns CNGS run

$E_{\text{kin}} = 1.4$ GeV
Pure $h = 9$
4+4 bunches injected into $h = 9$

→ Fully operational at 1.4 GeV
Present limits of $h = 9 \rightarrow 10 \rightarrow 20 \rightarrow 21$

- Bucket area limitation (0.91 eVs) during $h = 20 \rightarrow 21$ puts stringent longitudinal requirements to bunches from PSB at 1.4 GeV

- Intensity presently limited to what PSB can deliver within $\varepsilon_h, \varepsilon_v \sim 1.0/0.9 \, \mu m, \varepsilon_l \sim 0.7 - 0.8 \, eVs$

→ Will profit from intermediate flat-top above 1.4 GeV (before LS1?) and optimized tuning groups (after LS1)
Emittances at SPS flat-top (32 bunches)

→ 32 bunch beam ~ 1.1×10^{11} ppb; $\varepsilon_h, \varepsilon_v \sim 1.0$ μm at SPS extraction
→ Short fill with 32 bunch beam in LHC on 22/08/2012
→ Results from the LHC → See tomorrow’s LMC
High brightness beam studies

<table>
<thead>
<tr>
<th>#</th>
<th>Subject</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Establish transfer $h_{PSB2+1} \rightarrow h_{PS9} +$ RF manipulation $h = 9 \rightarrow 10 \rightarrow 20 \rightarrow 21$</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>Set-up top energy RF manipulations for 100 ns beam to CNGS</td>
<td>✔</td>
</tr>
<tr>
<td>3</td>
<td>Demonstrate double-batch transfer to $h = 9$</td>
<td>✔</td>
</tr>
<tr>
<td>4</td>
<td>Establish top energy RF manipulations to produce 50 ns, 32 bunches</td>
<td>✔</td>
</tr>
<tr>
<td>5</td>
<td>Validate high brightness 50 ns, 32 bunch beam in SPS and test in LHC</td>
<td>✗</td>
</tr>
<tr>
<td>6</td>
<td>Test RF manipulation at $E_{\text{kin}} > 1.4$ GeV</td>
<td>✗</td>
</tr>
</tbody>
</table>

- ✔ Completed
- ✗ Ongoing
- ✗ To be done before LS1

- $h = 9$ injected beams fully operational
- Results from test in LHC will define further strategy
Batch compression and bunch merging

- More evolved RF manipulations schemes from $h = 9$ to 21 (Chamonix 2012)

→ Most ‘simple’ scheme:

$$h = 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 7 \rightarrow 21$$

<table>
<thead>
<tr>
<th>Pure $h = 21$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 9$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25 ns</th>
<th>50 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splitting ratio PS ejection/injection</td>
<td>6</td>
</tr>
<tr>
<td>Batch length from PS</td>
<td>48</td>
</tr>
</tbody>
</table>

24 b, 50 ns at PS ej. | Satellites

PRELIMINARY 50 ns/div
0.2 V/div

10 V/div
High brightness beam studies

<table>
<thead>
<tr>
<th>#</th>
<th>Subject</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Establish RF manipulation $h = 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 7 \rightarrow 21$</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>Execute top energy RF manipulations and produce 50 ns, 24 bunches</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>Test high brightness 50 ns, 24 bunch beam with SPS (and LHC?)</td>
<td>✗</td>
</tr>
<tr>
<td>4</td>
<td>Test RF manipulation at $E_{\text{kin}} > 1.4$ GeV</td>
<td>✗</td>
</tr>
</tbody>
</table>

- **Completed**
- **Ongoing**
- **To be done before LS1**

- RF hardware ready
- Proof-of-principle demonstrated

→ Priority now driven by LHC needs
Overview

• Introduction
• Impedance studies
• Coupled-bunch and 1-turn delay feedbacks
• Alternative production schemes of LHC beams
• **Performance reach after LS1**
• Longitudinal transfer PS-SPS
• Summary
Potential improvements after LS1

- RF manipulations on intermediate flat-top
 - Reduces space charge
 - Bucket areas twice larger at $E_{\text{kin}} = 2.5$ GeV

- New tuning group structure 10 MHz cavities
 - 22% larger bucket area during RF manipulations

- Upgraded RF controls
 - More complicated programming of voltage programs, etc.

- Upgraded/new longitudinal feedbacks
 - New 1-turn delay feedback on main cavities
 - Coupled-bunch feedback 2014/2015

→ Significant commissioning time required after LS1
Estimated performance after LS1

<table>
<thead>
<tr>
<th>Full implementation after LS1</th>
<th>50 ns</th>
<th>50 ns</th>
<th>25 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32 bunches</td>
<td>24 bunches</td>
<td>48 bunches</td>
</tr>
<tr>
<td>PS injection</td>
<td>Bunch intensity</td>
<td>0.8·10^{12} ppb</td>
<td>0.6·10^{12} ppb</td>
</tr>
<tr>
<td></td>
<td>Emittance, $\beta\gamma\varepsilon$</td>
<td>~ 1.3 μm</td>
<td>~ 1.0 μm</td>
</tr>
<tr>
<td></td>
<td>Vert. tune spread, ΔQ_y</td>
<td>-0.26</td>
<td>-0.21</td>
</tr>
<tr>
<td>PS ejection</td>
<td>Bunch intensity</td>
<td>1.9·10^{11} ppb</td>
<td>1.9·10^{11} ppb</td>
</tr>
<tr>
<td></td>
<td>Emittance, $\beta\gamma\varepsilon$</td>
<td>~ 1.3 μm</td>
<td>~ 1.1 μm</td>
</tr>
<tr>
<td></td>
<td>Bunches per batch</td>
<td>32</td>
<td>24</td>
</tr>
</tbody>
</table>

- **Brightness limit PSB**: X
- **Space charge limit PS**: X
- **Coupled-bunch limit PS**: X

SPS ejection	Bunch intensity	1.71·10^{11} ppb	1.71·10^{11} ppb	1.15·10^{11} ppb
	Emittance, $\beta\gamma\varepsilon$	1.5 μm	1.2 μm	1.4 μm
Relative intensity/luminosity in LHC	0.96/1.3	0.92/1.6	**1.2/1.2**	

(= expected performance, conservative PS space charge limit)

→ Moderate intensity high brightness 25 ns beam after LS1

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012
Overview

• Introduction

• Impedance studies

• Coupled-bunch and 1-turn delay feedbacks

• Alternative production schemes of LHC beams

• Performance reach after LS1

• Longitudinal transfer PS-SPS

• Summary
PS-SPS longitudinal transfer studies

<table>
<thead>
<tr>
<th>#</th>
<th>Subject</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scan rotation times $1 \times 40 \text{ MHz} + 2 \times 80 \text{ MHz}$, single injection to SPS</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>Scan rotation times $2 \times 40 \text{ MHz} + 2 \times 80 \text{ MHz}$, single injection</td>
<td>✔</td>
</tr>
<tr>
<td>3</td>
<td>Scan rotation times $1 \times 40 \text{ MHz} + 3 \times 80 \text{ MHz}$, single injection</td>
<td>✔</td>
</tr>
<tr>
<td>4</td>
<td>Check dependence on longitudinal emittance and intensity</td>
<td>✔</td>
</tr>
<tr>
<td>5</td>
<td>Validate measurements $2 \times 40 \text{ MHz}$ and $3 \times 80 \text{ MHz}$ on operational cycle</td>
<td>✗</td>
</tr>
<tr>
<td>6</td>
<td>Commission operational implementation of $2 \times 40 \text{ MHz} + 2 \times 80 \text{ MHz}$?</td>
<td>✗</td>
</tr>
</tbody>
</table>

- ✔ Completed
- ✗ Ongoing
- ✗ To be done before LS1

Helga Timkó

→ See dedicated presentation
Summary

1. Fully completed studies
 • Broad-band impedance measurements

2. Advanced, but to be completed with high priority to fully specify hardware requirements
 • 1-turn feedback tests
 • Studies of high brightness options
 • PS-SPS longitudinal transfer optimization (→ Helga’s talk)

3. Started, will especially profit from run in Q1/2013
 • Stability measurements with coupled-bunch FB
 • Repeat extensive studies with C10-11 as feedback kicker
LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!