

LHC Injectors Upgrade

LHC Injectors Upgrade

PS: the Longitudinal Plane

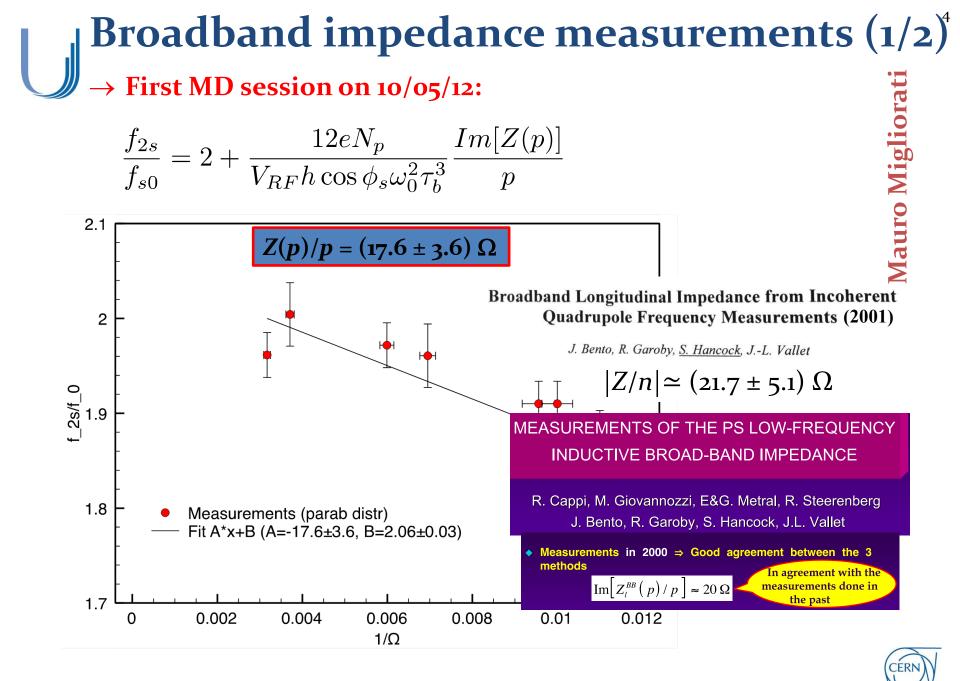
H. Damerau, S. Hancock

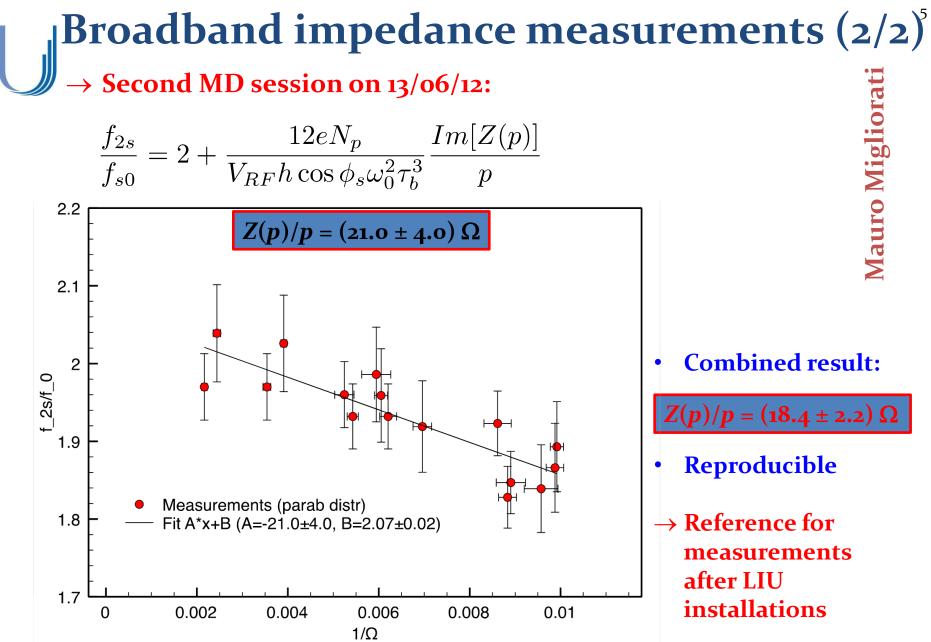
LIU Beam Studies Review Meeting

28 August 2012

Many thanks to H. Bartosik, T. Bohl, A. Findlay, S. Gilardoni, G. Metral, M. Migliorati, B. Mikulec, M. Paoluzzi, D. Perrelet, S. Persichelli, C. Rossi, E. Shaposhnikova, H. Timkó, PSB, PS and SPS Operations Teams, ...

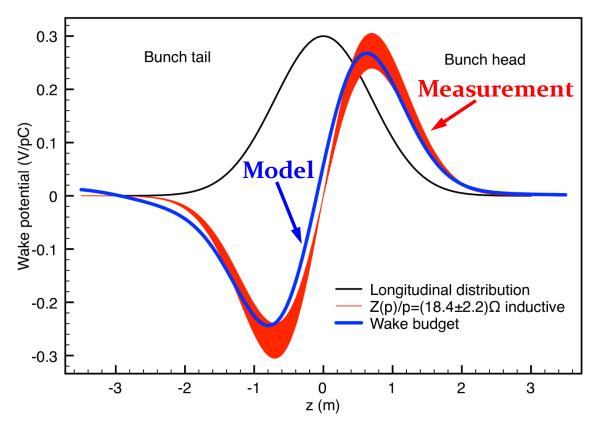
- - Introduction
 - Impedance studies
 - Coupled-bunch and 1-turn delay feedbacks
 - Alternative production schemes of LHC beams
 - Performance reach after LS1
 - Longitudinal transfer PS-SPS
 - Summary




Introduction

Impedance studies

- Coupled-bunch and 1-turn delay feedbacks
- Alternative production schemes of LHC beams
- Performance reach after LS1
- Longitudinal transfer PS-SPS
- Summary



H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012

Comparison with theoretical model

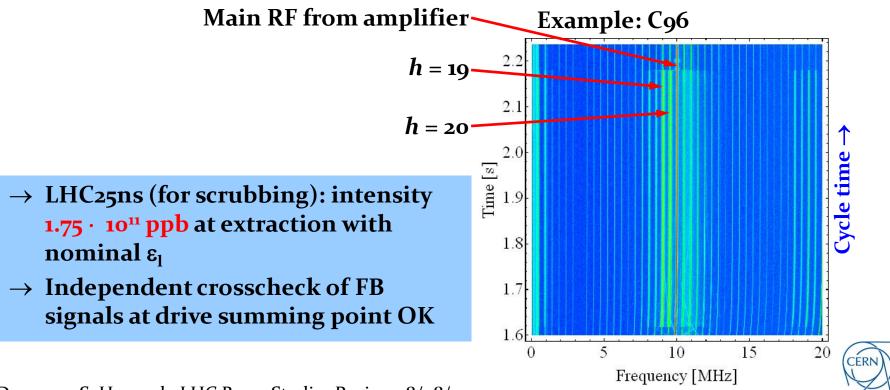
 Theoretical impedance budget including kickers, cavities, pumping ports, step transitions of beampipe, etc.

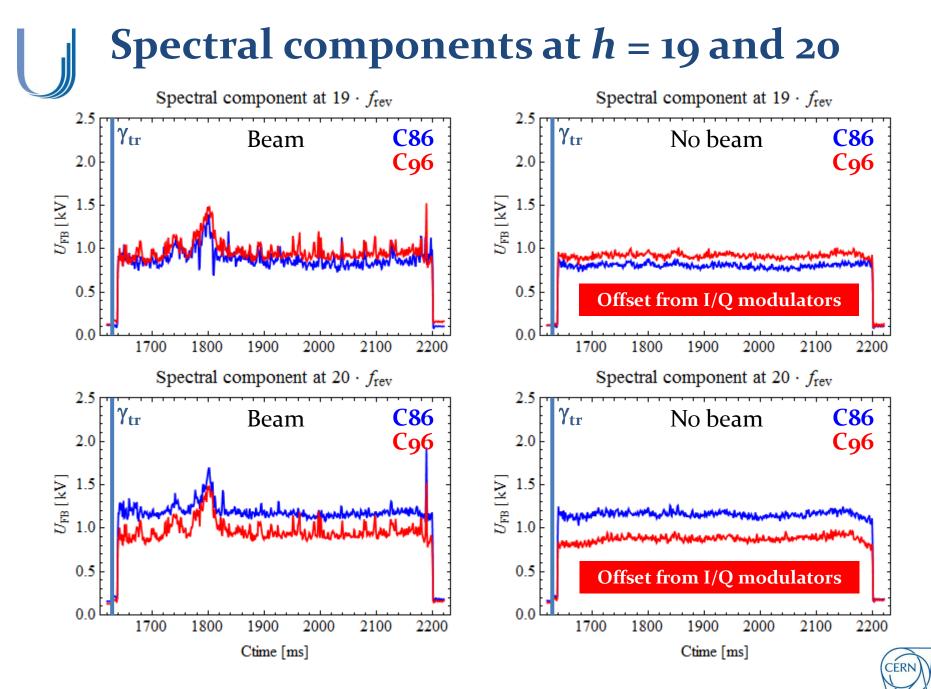
→ Excellent agreement of measured impedance with model → No further MD time required before LS1

Broadband impedance studies

Subject

- 1 Broad-band impedance measurement (quadrupole BTF, using C40-78)
- 2 Re-measure #1 as independent crosscheck (using C40-77)
 - \rightarrow Broad-band impedance studies completed
 - → Reference point for later measurements


Introduction


- Impedance studies
- Coupled-bunch and 1-turn delay feedbacks
- Alternative production schemes of LHC beams
- Performance reach after LS1
- Longitudinal transfer PS-SPS
- Summary

Kick strength of PS coupled-bunch FB

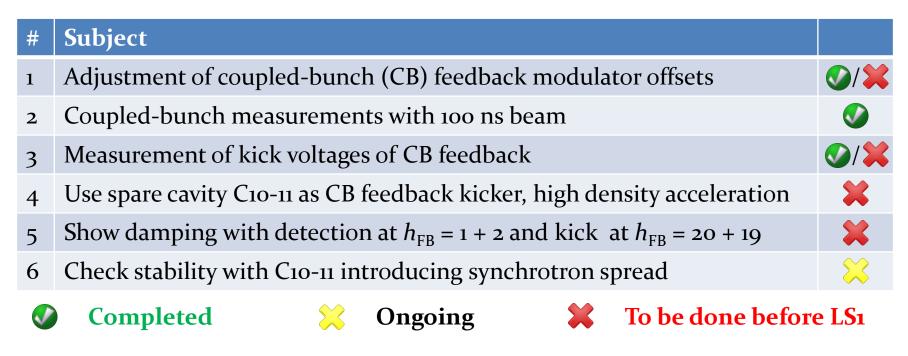
- Present coupled-bunch feedback acts on 10 MHz cavities C86/96
- Generates RF voltage at $(h-1) \cdot f_{rev}$ and $(h-2) \cdot f_{rev}$, far away from cavity resonance
- → New Finemet-based wide-band kicker cavity installed during LS1

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012

Results of preliminary studies

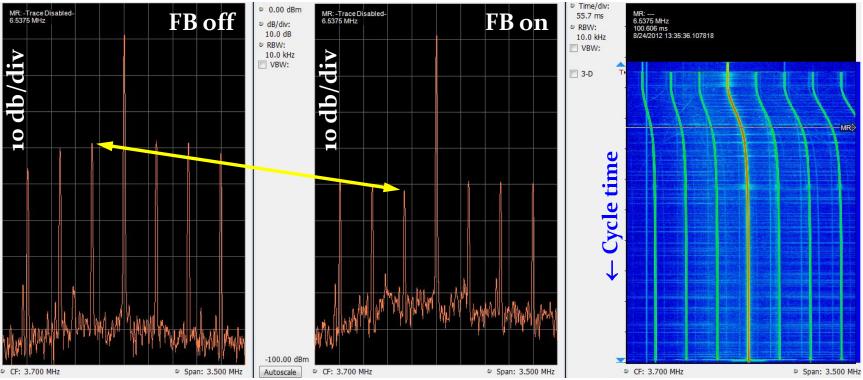
- Effective kick strength of the order of ~ 0.5 kV per mode for 25 ns beam with an intensity of 1.75 · 10¹¹ ppb → to be checked
- Unwanted carrier leakage from existing feedback already observed earlier
 - \rightarrow Offset problem with up-conversion mixers identified

→ Present work hypothesis: Damper cavity dimensioned for 5-6 simultaneous harmonics from 0.4 to 5.5 MHz with an amplitude of ~ 1 kV each


Feed-forward beam compensation studies independent from LS1
 → Collaboration with KEK

Mauro Paoluzzi

Coupled-bunch feedback studies



- → Still important studies to be performed before LS1: #4 #6
- → Beginning of 2013 ideal period for #4 since CB-FB not required for high-intensity LHC beam production anymore

Impedance and 1-turn feedback studies

Fully digital 1-turn feedback prototype, based on LHC 1-turn FB

Beam induced spectrum on cavity return signal along cycle (TOF)

- → Excellent result: prototype already better than operational system
- \rightarrow Validate series version board in Q1/2013?
- → Full installation on all 10 MHz cavities during LS1

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012

Damien Perrelet

New 1-turn feedbacks

#	Subject	
3	Test of new 1-turn feedback on 10 MHz test cavity (no beam)	V
4	Test of new 1-turn feedback on spare cavity C10-11 (with beam)	
5	Full validation of 1-turn feedback prototype with beam	\approx
6	Test of I/Q modulator/demodulator for 1-turn feedback 20/40/80 MHz	*
	Completed 🔀 Ongoing 🗱 To be done before	LS1

- \rightarrow Full validation of 10 MHz 1-turn feedback prototype ongoing
- \rightarrow Validate pre-series version with beam before LS1

→ Modulator/demodulator test depends on availability of prototype hardware

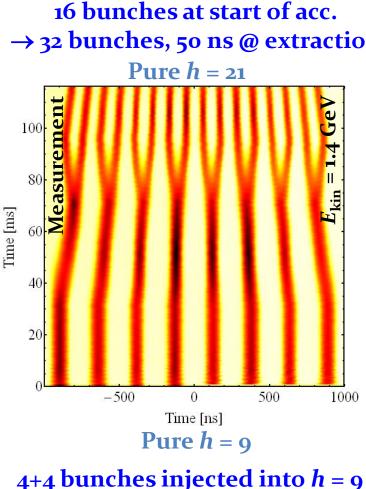
Introduction

- Impedance studies
- Coupled-bunch and 1-turn delay feedbacks
- Alternative production schemes of LHC beams
- Performance reach after LS1
- Longitudinal transfer PS-SPS
- Summary

Alternative schemes from PSB and PS

- Ideas for schemes with increased brightness in 2003 (Garoby et al.)
- Chamonix 2011: alternative RF manipulations (Carli, Garoby) http://indico.cern.ch/getFile.py/access?contribId=26&sessionId=8&resId=3&materialId=slides&confId=103957
- Chamonix 2012: first measurements and expected performance https://indico.cern.ch/getFile.py/access?contribId=41&sessionId=6&resId=1&materialId=slides&confId=164089
- 140th LMC: First higher brightness 50 ns variant ready for LHC

https://espace.cern.ch/lhc-machine-committee/Presentations/1/lmc_14o/lmc_14og.pdf


Bunch intensity to SPS/LHC (no losses in PS/SPS) per bunch from PSB:

PS RF manipulation scheme	25 ns bunch spacing	50 ns bunch spacing	hes
1. Triple splitting	$N_{\rm PSB}/12$ in 72 b	$N_{\rm PSB}/6$ in 36 b	er brightne PS batches
2. Batch compression + double split	N _{PSB} /8 in 64 b	N _{PSB} / <mark>4</mark> in 32 b	
3. Batch comp. + merge + triple split	$N_{\rm PSB}/6$ in 48 b	$N_{\rm PSB}/3$ in 24 b	High onger
4. Pure batch compression	$N_{\rm PSB}/4$ in 32 b	$N_{\rm PSB}/2$ in 16 b	

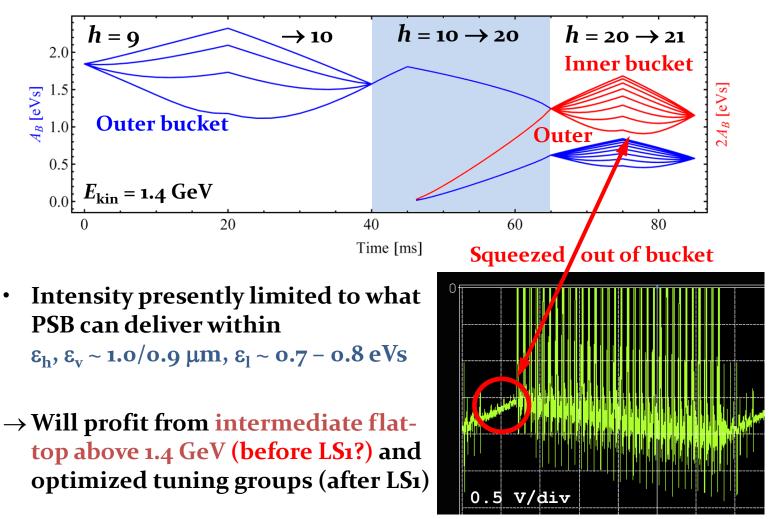
Batch comp. + split: $h = 9 \rightarrow 10 \rightarrow 20 \rightarrow 21$

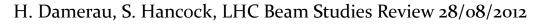
Suggested in Chamonix 2011 as option to produce higher intensity or higher brightness per bunch for LHC, first beam tests in PS in 2011

extraction		25 NS
eV	Splitting ratio PS ejection/injection	8
94.1	Batch length from PS	64
Ekin =	 ✓ New hardware comm ✓ Double-batch inject 	

- ✓ Top energy RF manipulations
- ✓ Delivered to SPS and LHC
- ✓ Positive operational experience from 100 ns CNGS run

 \rightarrow Fully operational at 1.4 GeV

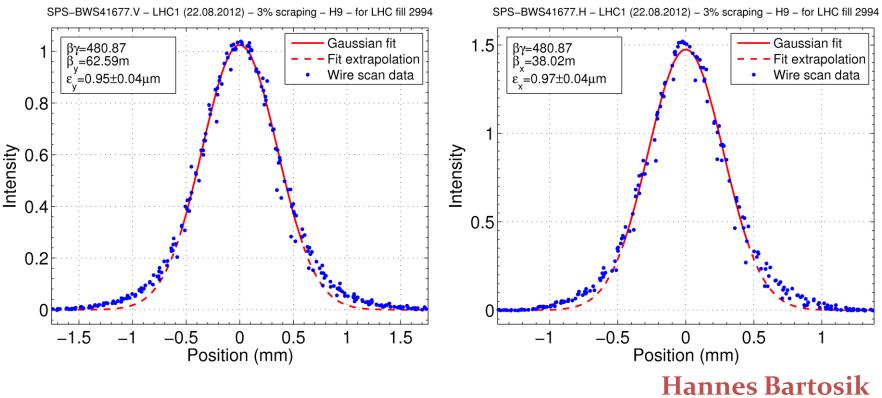

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012


50 ns

32

Present limits of $h = 9 \rightarrow 10 \rightarrow 20 \rightarrow 21$

 Bucket area limitation (0.91 eVs) during h = 20 → 21 puts stringent longitudinal requirements to bunches from PSB at 1.4 GeV



Emittances at SPS flat-top (32 bunches)

Horizontal

Vertical

- \rightarrow 32 bunch beam ~ 1.1 \cdot 1011 ppb; ϵ_h, ϵ_v ~ 1.0 μm at SPS extraction
- \rightarrow Short fill with 32 bunch beam in LHC on 22/08/2012
- → Results from the LHC → See tomorrow's LMC

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012

19

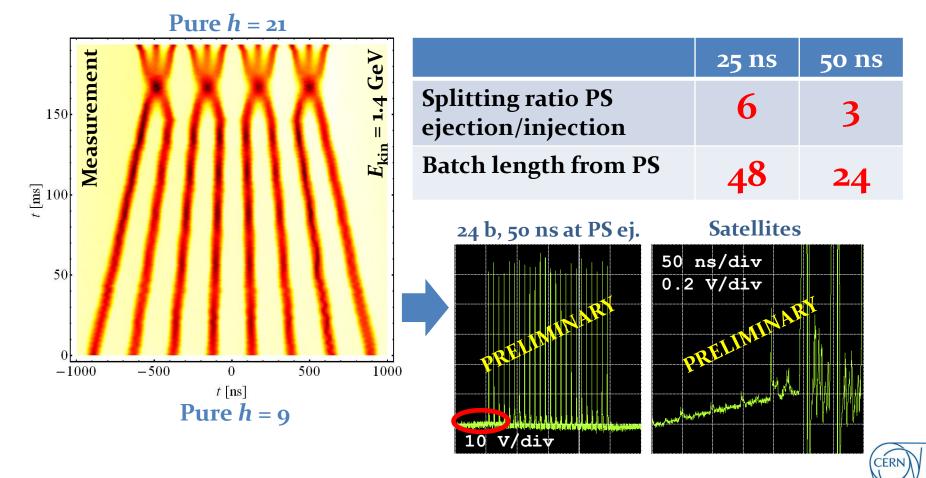
High brightness beam studies

Subject

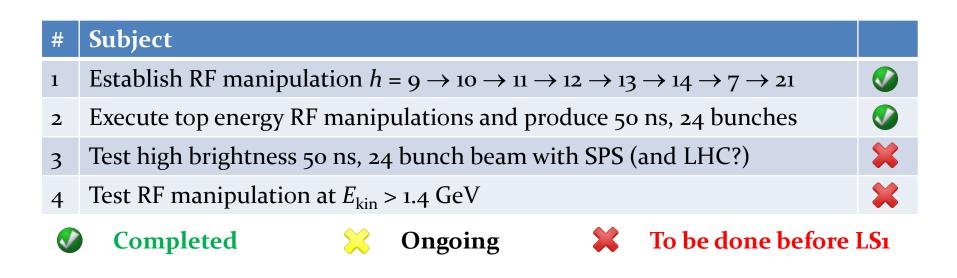
- 1 Establish transfer $h_{\text{PSB}_{2+1}} \rightarrow h_{\text{PS}_9}$ + RF manipulation $h = 9 \rightarrow 10 \rightarrow 20 \rightarrow 21$
- 2 Set-up top energy RF manipulations for 100 ns beam to CNGS
- 3 Demonstrate double-batch transfer to h = 9
- 4 Establish top energy RF manipulations to produce 50 ns, 32 bunches
- 5 Validate high brightness 50 ns, 32 bunch beam in SPS and test in LHC
- 6 Test RF manipulation at $E_{kin} > 1.4$ GeV

Completed

To be done before LS1


- *h* = 9 injected beams fully operational
- \rightarrow Results from test in LHC will define further strategy

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012


 \bigotimes

Batch compression and bunch merging

- More evolved RF manipulations schemes from h = 9 to 21 (Chamonix 2012)
- $\rightarrow \text{Most 'simple'} \quad h = 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 7 \rightarrow 21$ scheme:

High brightness beam studies

- RF hardware ready
- Proof-of-principle demonstrated
- → Priority now driven by LHC needs

Introduction

- Impedance studies
- Coupled-bunch and 1-turn delay feedbacks
- Alternative production schemes of LHC beams
- Performance reach after LS1
- Longitudinal transfer PS-SPS
- Summary

Potential improvements after LS1

- RF manipulations on intermediate flat-top MDs before LS1
 - \rightarrow Reduces space charge
 - \rightarrow Bucket areas twice larger at $E_{\rm kin}$ = 2.5 GeV
- New tuning group structure 10 MHz cavities \rightarrow 22 % larger bucket area during RF manipulations
- Upgraded RF controls
 - \rightarrow More complicated programming of voltage programs, etc.
- Upgraded/new longitudinal feedbacks
 - \rightarrow New 1-turn delay feedback on main cavities
 - \rightarrow Coupled-bunch feedback 2014/2015

\rightarrow Significant commissioning time required after LS1

Estimated performance after LS1

Full implementation after LS1		50 ns 32 bunches	50 ns 24 bunches	25 ns 48 bunches
PS injection	Bunch intensity	0.8·10 ¹² ppb	0.6·10 ¹² ppb	0.8·10 ¹² ppb
	Emittance, $\beta \gamma \varepsilon$	~ 1.3 µm	~ 1.0 µm	~ 1.1 µm
	Vert. tune spread, $\Delta Q_{\rm y}$	-0.26	-0.21	-0.26
PS ejection	Bunch intensity	1.9·10 ¹¹ ppb	1.9·10 ¹¹ ppb	1.27·10 ¹¹ ppb
	Emittance, $\beta \gamma \varepsilon$	~ 1.3 µm	~ 1.1 µm	~ 1.3 µm
	Bunches per batch	32	24	48
Brightness limit PSB			X	
Space charge limit PS		X		X
Coupled-bunch limit PS		X	X	
SPS ejection	Bunch intensity	1.71·10 ¹¹ ppb	1.71·10 ¹¹ ppb	1.15·10 ¹¹ ppb
	Emittance, $\beta \gamma \varepsilon$	1.5 µm	1.2 µm	1.4 µm
Relative intensity/luminosity in LHC		0.96/1.3	0.92/1.6	1.2/1.2

(expected performance, conservative PS space charge limit)

 \rightarrow Moderate intensity high brightness 25 ns beam after LS1

Introduction

- Impedance studies
- Coupled-bunch and 1-turn delay feedbacks
- Alternative production schemes of LHC beams
- Performance reach after LS1
- Longitudinal transfer PS-SPS

• Summary

PS-SPS longitudinal transfer studies

Subject

- Scan rotation times 1×40 MHz + 2×80 MHz, single injection to SPS
- 2 Scan rotation times 2×40 MHz + 2×80 MHz, single injection
- 3 Scan rotation times 1×40 MHz + 3×80 MHz, single injection
- 4 Check dependence on longitudinal emittance and intensity
- 5 Validate measurements 2×40 MHz and 3×80 MHz on operational cycle
- 6 Commission operational implementation of 2×40 MHz + 2×80 MHz?

🔀 Ong

Ongoing

To be done before LS1

Helga Timkó

\rightarrow See dedicated presentation

H. Damerau, S. Hancock, LHC Beam Studies Review 28/08/2012

 \bigotimes

 \mathbf{X}

Summary

- 1. Fully completed studies
 - Broad-band impedance measurements
- 2. Advanced, but to be completed with high priority to fully specify hardware requirements
 - 1-turn feedback tests
 - Studies of high brightness options
 - PS-SPS longitudinal transfer optimization (→ Helga's talk)
- 3. Started, will especially profit from run in Q1/2013
 - Stability measurements with coupled-bunch FB
 - Repeat extensive studies with C10-11 as feedback kicker

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

