

Outline

- Introduction & Motivation
- Instability thresholds and intensity limitations
- Extraction from Q20 and injection into LHC
- Studies left to be done and conclusion

Introduction – Instabilities in the SPS

- Present intensity limitations for LHC proton beams with nominal optics:
 - TMCI at injection single bunch instability in vertical plane
 - Threshold at 1.6x10¹¹p/b (ϵ_L =0.35eVs, τ =3.8ns) with low ξ_v

$$N_{th} \sim \eta \epsilon_l / \beta_y$$

- Longitudinal instabilities
 - Threshold at 3x10¹⁰p/b at for single harmonic RF

- η slip factor
- ε_l longitudinal emittance
- τ bunch length
- β_v vertical beta-function
- γ_t gamma transition
- Q_s synchrotron tune

- E-cloud effects for 25ns beam
 - Threshold? ... presently not observed for nominal intensity (1.2x10¹¹p/b) due to scrubbing

$$N_{th} \sim Q_s \sim \eta$$

(for given longitudinal beam parameters)

⇒ Instability thresholds can be raised by increasing slip factor η!

Increasing slip factor η in SPS

$$\eta = \frac{1}{\gamma_t^2} - \frac{1}{\gamma^2}$$

+

$$\gamma_{t_{FODO}} pprox Q_x$$

 \Rightarrow Reduce horizontal tune $Q_x!$

Q20 low- γ_t optics:

- ⇒ Factor 2.8 higher η at injection energy!
- ⇒ Factor 1.6 higher η at flat top!

Optics comparison

- Working point lowered by 6 integer units in both planes $(Q_x/Q_y = 20.13/20.18)$
- No increase of β -function maxima, but higher dispersion (\rightarrow lower γ_t)
- Q20 optics obtained by reducing quadrupole strength by 30%
- Dispersion in long straight sections similar to nominal optics

Outline

Introduction & Motivation

Instability thresholds and intensity limitations

Extraction from Q20 and injection into LHC

Studies left to be done and conclusion

Q20 – TMCI intensity threshold

- Scaling from SPS nominal to Q20 optics:
 - η_{Q20}/η_{Q26} =2.85 (at injection)
 - Average β_v around 1.3 times lager in Q20
 - \Rightarrow Expect N_{th} $\sim 2.85/1.3*1.6x10^{11}$ p/b = $3.5x10^{11}$ p/b

 $N_{th} \sim \eta \epsilon_l / \beta_y$

TMCI with Q20 not clearly observed experimentally yet

- ⇒ Injected up to 4x10¹¹p/b with small vertical chromaticity and moderate losses within first 100ms
- ⇒ Margin for increasing intensity per bunch especially for HL-LHC parameters
- ⇒ Very interesting for high intensity single bunch MDs in LHC
 - High pile-up (already used 9/7/2012)
 - Beam-beam
 - Instability thresholds

Space charge – high intensity single bunch

Working point adjusted to xx.13/xx.18 for each intensity step

- Space charge tune spread around ΔQ_x/ΔQ_v≈0.13/0.18
- Brightness is similar in both optics, slightly smaller tune spread in Q20 due to larger dispersion

High intensity

- Can be accessed with Q20 even with low chromaticity
- In Q26 significant increase of chromaticity required to mitigate TMCI

Electron cloud instability - simulations

Head tail simulations

- Uniform electron cloud distribution
- Injection energy
- Electron cloud is located in dipole regions

Presently the nominal 25ns beam does not suffer from e-cloud effects, but more margin with Q20 ...

- Instability threshold scales with Q_s (~η for matched RF-voltage)
- ⇒ Clearly higher instability threshold with Q20!

Longitudinal instability threshold

Narrow band impedance thresholds (Q20)

- Instability threshold decreases with energy in second part of cycle
 - Controlled longitudinal emittance blow-up in routine operation
 - Less longitudinal emittance blow-up needed in Q20 due to higher threshold
- Instability limit at flat bottom
 - Becomes critical with Q26 optics when pushing intensity
 - Huge margin for increasing intensity with Q20 optics (factor ~3 higher threshold)

Bunch length at extraction

- Higher RF-voltage in Q20 needed for same bucket area (V~η)
- RF-voltage limited to 7.5MV
 - Maximal voltage is used at flat top to shorten bunches for transfer to LHC
- For given longitudinal emittance
 - Longer bunches at extraction from Q20 (capture losses in LHC?)
 - RF upgrade should help
- For given bunch length at extraction
 - Smaller longitudinal emittance from Q20 optics (IBS and instability on LHC flat bottom?)
 - Similar longitudinal stability in SPS since N_{th}~ε²ητ
- LHC MD in August was devoted to 50ns beam with different bunch lengths from Q20

Longitudinal beam quality at flat top – 50ns

Less spread of bunch lengths at flat top for Q20 optics

- Similar bunch length in both optics, but smaller longitudinal emittance for Q20
- No controlled longitudinal blow-up for Q20 in this case (but preferred to be used for mitigating IBS effects on LHC flat bottom, see below)
- See talk of T. Argyropoulos for comparison of longitudinal stability

25ns beam - results from 2011

- Comparing stability without controlled longitudinal emittance blow-up
 - 1 batch of 72 bunches with 25ns spacing and 1.2x10¹¹p/b
 - 800 MHz cavity is on (voltage around 1/10 of 200 MHz)

⇒ Emittance blow-up needed

⇒ no emittance blow-up needed (for this intensity)

Continue studies with 25ns beam in Q20 in remaining MD time

Outline

- Introduction & Motivation
- Instability thresholds and intensity limitations
- Extraction from Q20 and injection into LHC
- Studies left to be done and conclusion

Short bunches at LHC injection (1.45ns)

- Fill 2944: τ_i≈1.45ns / ε_i≈0.37eVs (@SPS extraction from Q20)
 - No controlled blow-up in SPS (beam passes BQM even though slightly unstable)
 - Longitudinal injection oscillations damped as usual → no instability in LHC

Short bunches at LHC injection (1.45ns)

- Fill 2944: τ_i≈1.45ns / ε_i≈0.37eVs (@SPS extraction from Q20)
 - No controlled blow-up in SPS (beam passes BQM even though slightly unstable)
 - Longitudinal injection oscillations damped as usual → no instability in LHC
 - Slightly stronger bunch length growth on flat bottom, transverse emittance to be checked

Long bunches at LHC injection (1.70ns)

- Fill 2947: τ_i≈1.70ns / ε_i≈0.5eVs (@SPS extraction from Q20)
 - No increase of losses on TDI compared to short bunches!
 - Slightly weaker bunch length growth on flat bottom (ε_I similar to nominal beam)

- Fill 2950: τ_i≈1.65ns / ε_i≈0.48eVs (@SPS extraction from Q20)
 - Typical bunch length growth on flat bottom (ε_I like in operational beam)
 - Transverse emittance (wire scans) in LHC similar to injection with Q26 optics later that day

Final steps for making Q20 operational

- Prepare probe cycle with Q20 optics
- Final verification of extraction settings
- Study transverse emittance evolution on LHC flat bottom with intermediate longitudinal blow-up in SPS Q20
- Measure tails at SPS flat top using scrapers
- Find the best moment to switch
 - Constraints due to ions for LHC MDs, 25ns beam for scrubbing (extraction with Q20 not tested yet), technical stop, ...
- Fine-tuning of SPS low-level RF and controlled longitudinal blow-up settings is expected to further improve Q20 longitudinal beam quality

Outline

- Introduction & Motivation
- Instability thresholds and intensity limitations
- Extraction from Q20 and injection into LHC
- Studies left to be done and conclusion

Studies left to be done

- Tails and transverse emittance for operational 50ns beam with Q20
 - Using the scraper
 - Multiple wire scans and measurements in the LHC
- 25ns beam in Q20 optics: nominal and higher intensity
 - In preparation for LHC scrubbing run when Q20 is operational
 - In preparation for post-LS1 comparison with Q26
- Further studies with high intensity single bunch studies
 - Space charge study maximal space charge tune spread
 - TMCI
- lons with Q20
 - Simulations predict that IBS and space charge spread are slightly better with Q20
 - Interplay with space charge and RF noise

Clear improvement for various instabilities in SPS with Q20 optics

- Demonstrated experimentally and theoretically
- Q20 enables HL-LHC / LIU parameter space for SPS
- Q20 provides margin to increase the intensity for 50ns operation already this year

Q20 optics is practically ready to be put in operation for LHC filling

- Intermediate longitudinal blow-up setting with Q20 gave good results in LHC MD
- Some details with extraction to be clarified
- "Probe" cycle to be set-up
- Using Q20 for the LHC filling allows to gain experience and identify unexpected problems

Further studies this year

- Gain operational experience with Q20
- 25ns beam with Q20 (nominal and high intensity)
- Single bunch limitations in view of HL-LHC beam parameters (intensity and brightness)

LHC Injectors Upgrade

Thank you for your attention!

