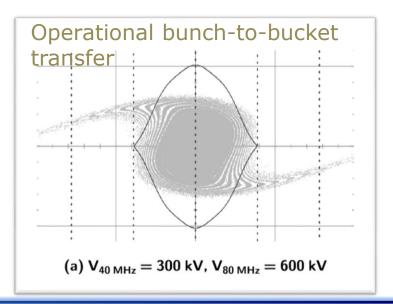


PS-to-SPS longitudinal beam transfer studies

Helga Timkó BE-RF-BR in collaboration with

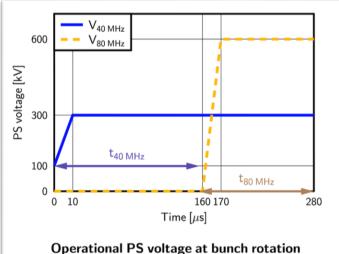
Heiko Damerau, Theodoros Argyropoulos, Thomas Bohl, Steven Hancock, Juan Esteban Müller, Elena Shaposhnikova

Introduction & motivation


- Continuous efforts to optimise the PS-SPS transfer for several years
- *<u>In the past:</u>* the aim was to reduce losses
 - For low SPS capture voltages, losses were unacceptable 20-40 % (2004)
- <u>Now</u>: only ~5 % losses for the nominal intensity (due to long optimisation and less e-cloud)
 - However, relative losses increase with intensity ⇒ will be an issue
 - Using a larger ε_1 is desirable for stability in the PS & SPS
 - Will also be more critical for future higher intensities
- <u>In measurements till 2011</u> no loss reduction could be achieved
 - Idea: shorter τ using higher voltage for the PS bunch rotation
 - Result: even though τ got significantly shorter, loss remained the same
 - This scheme didn't work and it wasn't understood why...

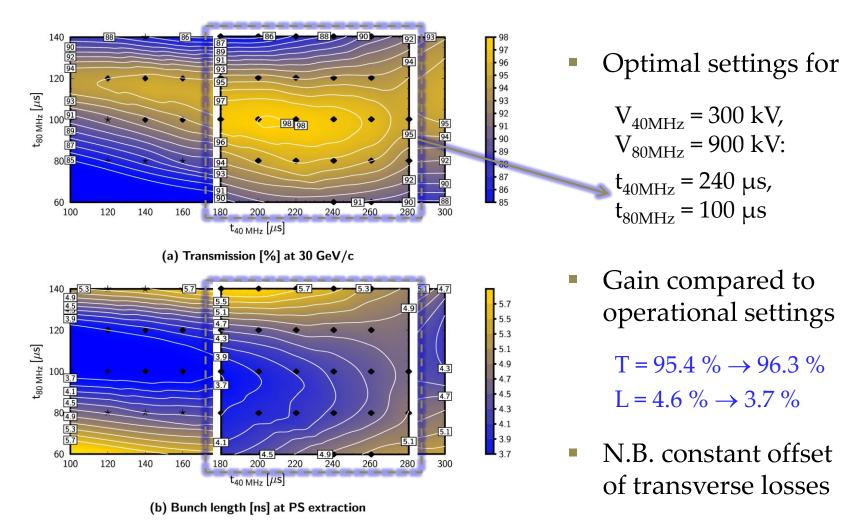
Simulations

- The LHC-type 50 ns and 25 ns beam has been modelled with ESME
 - Single bunch simulations, without intensity effects
 - Using averaged, real bunch distributions, measured at PS FT (with the tomoscope)
 - Full tracking of PS & SPS RF manipulations
 - PS: adiabatic voltage reduction, double splitting(s), bunch rotation;
 - SPS: FB, in some cases also ramp


- Capture losses dominated by losses from the bunch tails
 - Shorter bunches do not necessarily result in the best transmission
- Need to optimise the particle distribution in phase space – not visible from bunch profiles, sims. needed!

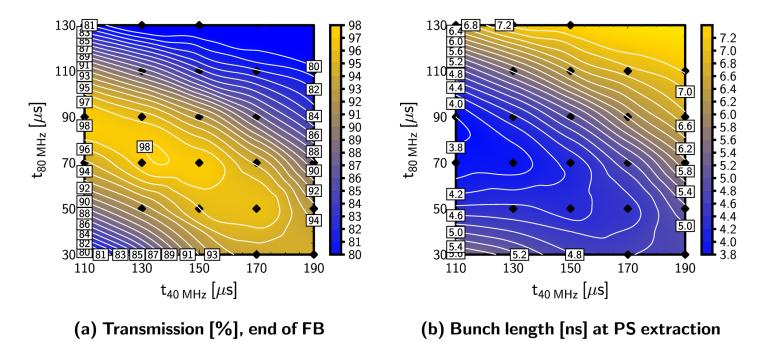

Measurements

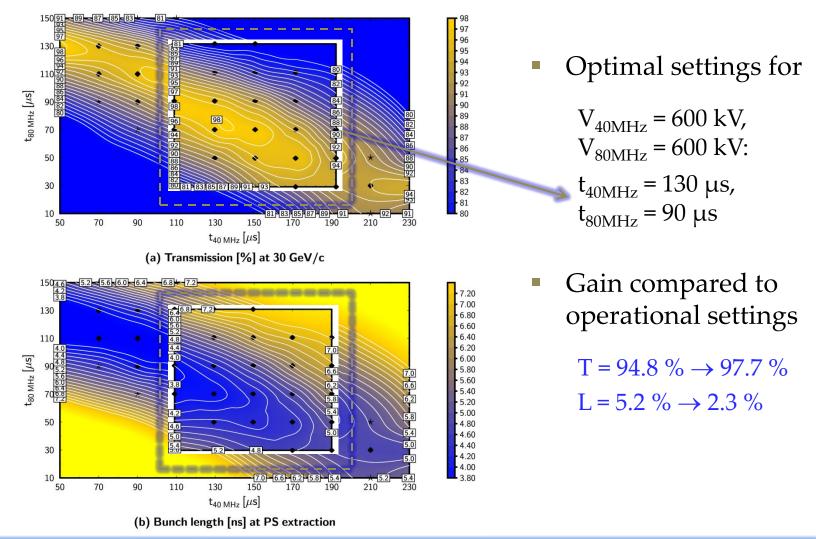
- First measurements started in 2011, 8 MD sessions in 2012
- <u>Dedicated cycle</u> for parallel-MD measurements
 - Single batch, 50 ns spaced LHC-type beam
 - Intensity: ~1.6× 10¹¹ ppb, except for one MD (intensity studies)
 - Varying the PS rotation timings $t_{40 \text{ MHz}}$ and $t_{80 \text{ MHz}}$ to optimise the distrib.
 - Using the spare 40 MHz and 80 MHz cavities in the PS to increase the rotation voltage
- Bunch length:
 - at PS ejection
- *<u>Transmission:</u>*
 - (intensity at 30 GeV) / (injected intensity)
 - In the simulations:
 - only capture + FB losses



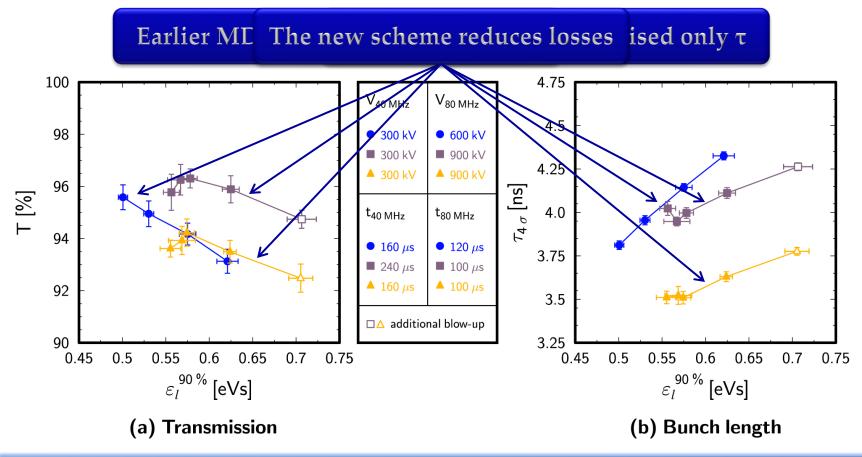
Option 1: CÉRN **Use the spare 80 MHz cavity**

- Simulations predict: optimum at t_{40MHz} = 200-220 µs, t_{80MHz} = 100 µs
- Gain compared to operational settings:
 - $T = 95.6 \% \rightarrow 97.9 \%$; $L = 4.4 \% \rightarrow 2.1 \%$



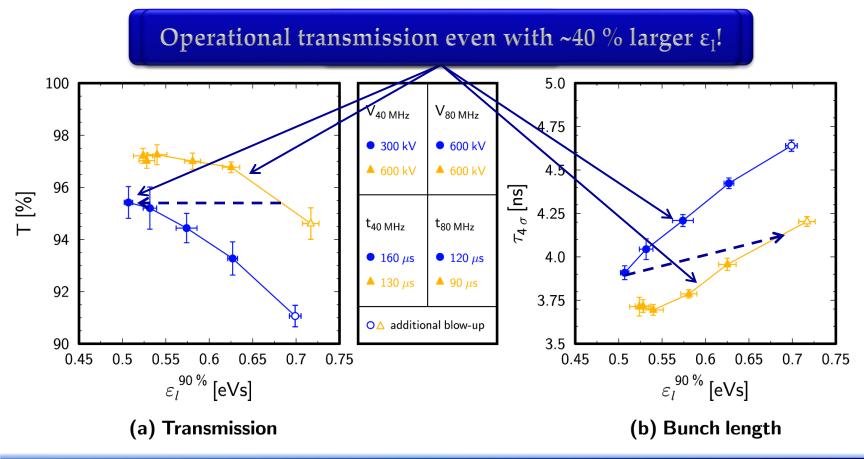

Option 2: Use the spare 40 MHz cavity

- Simulations predict: optimum at t_{40MHz} = 130 µs, t_{80MHz} = 80 µs
- Gain compared to operational settings:
 - $T = 95.6 \% \rightarrow 98.1 \%$; $L = 4.4 \% \rightarrow 1.9 \%$



Option 2: Measurement results

Spare 80 MHz cavity: Emittance dependence


• Now we understand the results of previous years...

CÉRN

Spare 40 MHz cavity: Emittance dependence

Gives a better transmission <u>and</u> shorter bunches!

Spare 40 MHz cavity: Intensity dependence

• About ~ 15 % higher intensity with the same transmission

	Vhlow-up	$t_{40} \mathrm{~MHz}$	$t_{80 \rm \ MHz}$	$arepsilon_l^{90}$ %	T	$ au_{4\sigma}$
Operati	onal	\rightarrow 1.58 × 10 ¹¹ ppb, $V_{40 \text{ MHz}} = 300 \text{ kV}, V_{80 \text{ MHz}} = 600 \text{ kV}$				
	$2 \times 5.5 \text{ kV}$	160 µs	120 µs	$(0.539 \pm 0.006) \text{ eVs}$ (0.546 + 0.005) eVs (1	
	$2 \times 5.5 \text{ kV}$	200 μs 1.81	$\frac{120 \ \mu s}{\times \ 10^{11} \ \mu ph}$	$(0.546 \pm 0.005) \text{ eVs}$ (V(0.800 = 300 kV V(0.000)	,	(4.23 ± 0.03) hs
	$1.81 \times 10^{11} \text{ ppb}, V_{40 \text{ MHz}} = 300 \text{ kV}, V_{80 \text{ MHz}} = 600 \text{ kV}$					
	$2 \times 5.5 \text{ kV}$	$160 \ \mu s$	$120 \ \mu s$	$(0.567 \pm 0.010) \text{ eVs}$ ($93.4 \pm 0.3) \ \%$	(4.02 ± 0.03) ns
	$2 \times 5.5 \text{ kV}$	$200 \ \mu s$	$120 \ \mu s$	$(0.611 \pm 0.008) \text{ eVs}$ ($93.4 \pm 0.9)$ %	(4.23 ± 0.03) ns
1.58×10^{11} ppb, $V_{40 \text{ MHz}} = 600 \text{ kV}, V_{80 \text{ MHz}} = 600 \text{ kV}$						
	$2\times5.5~\mathrm{kV}$	$130 \ \mu s$	$90 \ \mu s$	$(0.550 \pm 0.012) \text{ eVs}$ ($97.0 \pm 0.4) \%$	$(3.63\pm0.03)~\mathrm{ns}$
	$2 \times 8.5 \text{ kV}$	$130 \ \mu s$	$90 \ \mu s$	$(0.612 \pm 0.012) \text{ eVs}$ ($96.8 \pm 0.3)~\%$	(3.84 ± 0.02) ns
$ \frac{W/\text{ spare 40}}{\text{MHz cavity}} \rightarrow 1.81 \times 10^{11} \text{ ppb}, V_{40 \text{ MHz}} = 600 \text{ kV}, V_{80 \text{ MHz}} = 600 \text{ kV} $						
	$2 \times 5.5 \text{ kV}$	$130 \ \mu s$	$90~\mu s$	$(0.551 \pm 0.007) \text{ eVs}$ ($94.6 \pm 0.9)$ %	(3.71 ± 0.04) ns
	$2\times 8.5~\mathrm{kV}$	$130 \ \mu s$	90 µs	(0.550 ± 0.007) eVs ($95.1 \pm 0.7)$ %	(3.83 ± 0.02) ns

- <u>Using the spare 40 MHz cavity</u> has some clear advantages over the 80 MHz cavity:
 - Better transmission
 - Shorter bunch length
 - Emittance margin: 40 % (!)
 - Intensity margin: 15 %
 - Spare 40 MHz cavity not needed for ions (unlike the spare 80 MHz)
- <u>The new scheme still needs to be tested in an operational cycle</u>, but the spare 40 MHz cavity is currently unavailable
- Even if beam losses currently don't cause concerns, <u>stability is a key issue</u> at the present intensity, both in the PS & SPS
 - SPS \rightarrow Q20; PS \rightarrow maybe the spare 40 MHz cavity could be a solution?
 - Empirical longitudinal stability scaling in the PS (at low intensities): $N_b/\epsilon_1 = \text{const.}$ \Rightarrow in theory, could gain up to 40 % in intensity

- Using a spare 40 MHz cavity is 'for free' (only minimal low-level hardware required)
 - Requires improved operational availability of the 40 MHz cavities (e.g. new power supplies)
- Do we need the luxury of having a spare cavity?
 - If a cavity fails, we still can go back to the currently operational settings
- Adding a 3rd 40 MHz cavity to the PS is an option, too
 - But: at significant cost and manpower effort

Conclusions

- Simulations determined the loss mechanism of the PS-SPS transfer and agree very well with previous and present measurement results
- The <u>optimum phase space particle distribution</u> at PS extraction has been obtained by simulations, and confirmed by experiments
 - Can significantly improve the transmission
 - Or provide a ~40 % emittance margin while keeping the same transmission
- Has the potential to <u>improve beam stability</u> in the PS and, hence, allows for higher-intensity beams
 - Low-cost solution
- Once the spare 40 MHz cavity is available again, the new scheme still needs to be tested under operational conditions

- At high intensities: unstable beam in the PS and the SPS is sensitive (with Q26) to the injected *beam quality*, see talk of T. Argyropoulos
 - LHC acceptance can also be improved using larger emittance in the PS
- How about Q20?
 - Beam is more stable in Q20 in the SPS, so no or little emittance blow-up in the SPS will be necessary ⇒ beam quality from the PS will be preserved
 - Hence, it is even more important to have good beam quality already at injection to the SPS (i.e. larger emittance)
 - The improved PS rotation settings allow for larger emittance
 - At higher intensities, a larger emittance is necessary also for PS stability
 - In Q20, injection into relatively low voltages was successful ⇒ the FB voltage can still be increased to capture larger emittances