

Running reliable services: the LFC at CERN

Sophie Lemaitre (Sophie.Lemaitre@cern.ch)

WLCG service Reliability Workshop CERN – Geneva – 26th November 2007

www.eu-egee.org

- What is reliability?
- LFC usage at CERN
- Turning the LFC into a reliable service at CERN

Talk Overview

- What is reliability?
 - Ability of a system/component to perform its required functions under stated conditions
- What does it mean for you?
 - Ability to meet Tier1 SLA
 - 99% availability with maximum 12 hours downtime
- Increasing reliability = Increasing time when service is available = Reducing downtime
- Good practice
 - Don't lose the Experiments data!
 - Automate everything
 - Limit the server downtime
 - Front-end dynamic load balancing
 - Limit the database downtime
 - Oracle RAC
 - Limit time before noticing problem
 - Monitoring
 - Make sure to be able to react as fast as possible
 - Create procedures for operators (first level support)
 - Plan all interventions

- What is reliability?
- LFC usage at CERN
- Turning the LFC into a reliable service at CERN

Talk Overview

- Different experiments decided on different usage patterns
- LHCb
 - Central catalog
 - Read-only catalog (for scalability and redundancy)
 - Replica read-only catalogs at Tier1s
 - Replication done via Oracle Streams
- ATLAS
 - Central and local catalog
- CMS
 - Central catalog
- Shared catalog
 - Shared "catch-all" catalog for dteam, unosat, sixt, ...

General Infrastructure

- Backend storage is in Oracle
 - On the LCG Oracle RAC instance
 - Separate database accounts per experiment & catalog type
 - Better VO isolation
- All front-end nodes are in 2-node load-balanced clusters
 - Mid-range servers
 - Using automatic load-balancing to isolate "broken" nodes
 - Separate DNS alias for each VO & catalog type
- Full Service Description:

https://twiki.cern.ch/twiki/bin/view/LCG/LfcWlcg

LFC Central Catalogs

Alias	Supported VOs	<u>Comment</u>
prod-lfc-atlas-central	ATLAS	
prod-lfc-cms-central	CMS	
prod-lfc-shared-central	DTEAM, UNOSAT, GEANT4, GEAR, SIXT, OPS	
prod-lfc-lhcb-central	LHCb	read-write instance
prod-lfc-lhcb-ro	LHCb	read-only instance

LFC Local Catalogs

<u>Alias</u>	Supported VOs	<u>Comment</u>
prod-lfc-atlas-local	ATLAS	

- What is reliability?
- LFC usage at CERN
- Turning the LFC into a reliable service at CERN

Talk Overview

- Checklist
- Database backup
- Monitoring
- Dynamic DNS load balancing
- Firewall
- Quattor vs. YAIM
- Operators procedures

Checklist: requirements

Enabling Grids for E-sciencE

• See https://twiki.cern.ch/twiki/bin/view/LCG/WIcgScDashLfc

Requirements

Assess	Question to set assessment color if not available
Green	Service class defined for calendar periods: class C in all periods
Green	Disk space requirements defined: minimal local disk
Green	Database requirements defined: Oracle 10g on RAC
Green	Middleware components defined: LFC Server, BDII
Green	Connectivity requirements defined : incoming on 5010 (Ifcdaemon), 8085 (Ifc-dli)
Green	Backup objects defined (directories, databases): Oracle Database. All other state in CDB
Green	High level diagram of services: See LfcWlcg for diagram
📝 Edit	

Development

	Assess	Question to set assessment color if not available
	Green	Code delivered and installation images available: part of gLite-3.0.0 release
	Green	Code certified
	Green	Administration Guide available: LfcAdminGuide
	Green	Problem Determination Guide available: LfcTroubleshooting
	Green	Middleware pre-requisites (web server, LDAP,) defined: VDT
1	📝 Edit	

Checklist: hardware

Enabling Grids for E-sciencE

Hardware

Assess	Question to set assessment color if not available
Green	CPU power required for application: mid-range server machine OK
Green	Memory requirement for application: low-memory requirement - 2GB more than enough
Green	Inventory of hardware components defined v: Specified in LfcWlcg
Yellow	Machines on order or available: Machines on order, batch-nodes in place until available as replacments
Green	Machines installed in appropriate location within data centre (UPS,Network) : Installed in LCG network
Green	Database server and disk space allocated : Database backend on LCG Oracle RAC Cluster
📝 Edit	

Checklist: operations

Enabling Grids for E-sciencE

Assess	Question to set assessment color if not available	
Green	2nd level support organisation defined (who to call when there is a problem with the application or middleware) : Support teams defined in GGUS	
Green	Mechanism to contact 2nd level organisation : GGUS	
Yellow	Response time for 2nd level organisation : Best Effort	
Green	List of machines where service is running defined: See LfcWlcg#Overview	
Green	List of configuration parameters and their values for the software components : Expressed in CDB template pro_system_gridlfc.tpl	
Green	List of processes to monitor : Defined (Ifcdaemon, Ifc-dli, bdii)	
Green	List of file systems and their emergency thresholds for alarms : Defined (standard)	
Green	Application status check script requirements defined : Integrated into LEMON	
Green	Definition of scheduled processes (e.g. cron) : Managed by QUATTOR	
Green	Test environment defined and available : Certification nodes allocated	
Green	Problem determination procedures including how to determine application vs middleware vs database issues : Operator and Sysadmin procedures in OPM	
Green	Procedures for start/stop/drain/check status defined : Integrated with SMS	
Green	Automatic monitoring of the application in place : Integrated into LEMON	
Green	Backup procedures defined and tested: database backups and recoveries are handled by IT-PSS-Physics Databases section : <u>BackupPolicyManagers</u>	

Good practice

Database backups

- Don't lose the Experiments data!
- Ask your friendly database administrator to <u>backup</u> the LFC database

Plan all interventions

- Even the transparent ones
- To prevent coordination / communication problems as much as possible

• What to monitor?

In addition to the OS standard alarms, specific Lemon Alarms have been defined for the LFC:

Alarm name	Description	Comment
LFCDAEMON_WRONG	No lfcdaemon process running	
LFC_DLI_WRONG	No lfc-dli process running	
LFC_DB_ERROR	ORA-number string detected in /var/log/lfc/log	
LFC_NOREAD	can't stat given directory	trying to read /grid/ops/
LFC_NOWRITE	can't utime on file	
LFC_SLOWREADDIR	excessive time taken to read directory	time > 10 s
LFC_ACTIVE_CONN	number of active connections to LFC	USO netstat

• <u>Note:</u> avoid monitoring based on creating an LFC file/directory

- To avoid using file ids in the LFC database tables
- Update file utime instead (LFC_NOWRITE)

• Existing tools

- Generic LFC probe
 - See Monitoring Working Group web page https://twiki.cern.ch/twiki/bin/view/LCG/GridServiceMonitoringInfo

Monitoring (2)

Direct link to LFC probe

<u>https://www.sysadmin.hep.ac.uk/svn/grid-</u> onitoring/trunk/probe/ch.cern/src/LFC-probe

- At CERN, a Lemon sensor is used
 - "lemon-sensor-grid-lfc" package
 - See corresponding source in CVS
 <u>http://isscvs.cern.ch:8180/cgi-</u>
 <u>bin/cvsweb.cgi/elfms/lemon/sensors/sensor-grid-lfc/?cvsroot=elfms</u>
 - A Lemon wrapper to the LFC probe will be written in the future

DNS load balancing (1)

- Dynamic DNS load balancing
 - Solution implemented by Vlado Bahyl and Nick Garfield
 - See Vlado's presentation this morning
 - http://indico.cern.ch/materialDisplay.py?subContId=0&contribId=2&sessionId=0&mat erialId=slides&confId=20080
- For the LFC nodes, checking whether:
 - Cannot ssh, or
 - Node in maintenance, or
 - /tmp full, or
 - Alarm among
 - LFC_NOREAD, LFC_NOWRITE, LFCDAEMON_WRONG

Machine removed from DNS aliases

- Advantage:
 - All LFC software upgrades are <u>transparent</u> for the users
 - Except when database schema changes

• Ex: two DNS aliased nodes A and B

- 1) Put node A in maintenance
 - Wait for node A to be taken out of production by dynamic DNS load balancing
- 2) Stop + upgrade + start LFC on node A
- 3) Take node A out of maintenance
 - Wait for node A to be put back into production by dynamic DNS load balancing
- 4) Start at step 1) with node B

Firewall

• At CERN, using LANDB sets to control firewall access

- Common firewall settings for the whole LFC cluster
- If a change is made, it is <u>applied to all machines automatically</u>
 - No more "oooops, forgot to configure this one"...

Partitions

• The LFC log files are stored under

– /var/log/lfc

• Make sure the /var partition is big enough!

- This problem hit us at CERN... $\ensuremath{\mathfrak{S}}$
- WLCG log retention policy: 90 days
- Now, /var size is 200G on the LFC nodes

- Yaim is used to configure the grid aspects of the service
- Some duplication between QUATTOR and yaim
 - Approach is to use QUATTOR for system functionality
 - E.g. chkconfig, FS, accounts, access control, package management
 - And yaim for grid functionality

🗧 🕊 yaim

include pro_software_components_lcg_yaim_3_0; ''/software/components/yaim/active''=true; ''/software/components/yaim/configure'' = true; ''/software/components/yaim/nodetype/LFC_oracle'' = true; ''/software/components/yaim/conf/LFC_HOST'' = hostname; ''/software/components/yaim/conf/LFC_HOST_ALIAS'' = aliasname;

We need to run sindes and exportconf before yaim, so that we # have host certs, LFC DB password file and sysconfig "/software/components/yaim/dependencies/pre" = list("sindes", "exportconf");

CGCC Avoiding Yaim/Quattor conflicts

- For pieces of system functionality configured by both yaim and quattor, we remove them from YAIM
- Simple mechanism
 - place an empty config_XXX file in the yaim functions/local directory
 - Handled by an rpm 'CERN-CC-glite-yaim-local'

• React to problems as fast as possible

- Get operators to respond directly to known issues
- At CERN, most alarms open standard tickets
 - LFC_ACTIVE_CONN, LFC_SLOW_READDIR don't
 - ... because there's no immediate action you can take ;(
 - It's a sign of heavy usage of the service by the VO

- What is reliability?
 - Ability of a system/component to perform its required functions under stated conditions
- What does it mean for you?
 - Ability to meet Tier1 SLA
 - 99% availability with maximum 12 hours downtime
- Increasing reliability = Increasing time when service is available
 = Reducing downtime
- Good practice
 - Don't lose the Experiments data!
 - Automate everything
 - Limit the server downtime
 - Front-end dynamic load balancing
 - Limit the database downtime
 - Oracle RAC
 - Limit time before noticing problem
 - Monitoring
 - Make sure to be able to react as fast as possible
 - Create procedures for operators (first level support)
 - Plan all interventions

This will save you from a lot of trouble

- Integration with CERN fabric infrastructure
 - James Casey
- LFC administrators at CERN
 - Jan Van Eldik, Miguel Coelho, Ignacio Reguero, David Collados, Diana Bosio
- Dynamic DNS load balancing
 - Vlado Bahyl, Nick Garfield
- LFC expert
 - Jean-Philippe Baud

Questions?