RHIC status and upgrade plans

Wolfram Fischer

Thanks to many at BNL.

CARE-HHH-APD Workshop BEAM'07, CERN

1 October 2007

Outline

1. Status

- Achieved performance
- Performance limits

2. Upgrades

- Enhanced Design parameters
- Electron Beam Ion Source (EBIS)
- Au-Au collisions at very low energies
- RHIC II (stochastic cooling / electron cooling)
- eRHIC

Relativistic Heavy Ion Collider

RHIC running modes

Important control experiment in physics program

polarized p-p 11, 31, 100, 205, 250 GeV

Some modes only for days – fast machine setup essential.

RHIC Run-7 Au-Au

Run Coordinator: A. Drees

Projected maximum

Projected minimum

RHIC delivered luminosity

Delivered luminosity increased by >2 orders of magnitude in 5 years.

Delivered to PHENIX, one of RHIC's high-luminosity experiments.

Hadron collider luminosities

Show nucleon-pair luminosity for ions: $\mathcal{L}_{NN}(t) = A_1 A_2 \mathcal{L}(t)$ (can compare different ion species, including protons)

Calendar time in store after setup

No progress with time-in-store in last 2 years.

Rest of the time:

- ~20% machine tuning/ramping
- ~15% failures
- ~10% machine development and accelerator physics experiments

Performance limit: IBS for heavy ions

Longitudinal stochastic cooling in Yellow operational M. Blaskiewicz

M. Brennan

About 20% luminosity gain per ring from stopping debunching

$$\tau^{-1} \propto \frac{Z^4}{A^2} N_b$$
[Factor 10 between Au an p]

Longitudinal stochastic cooling in RHIC

Evolution of longitudinal profiles over 5 hours

M. Blaskiewicz M. Brennan COOL'07

Satellites are result of 2 rf harmonics (360 + 7×360)

Performance limit: transition crossing for heavy ions Crossing transition with slowly ramping sc. Magnets (all ions except protons)

- \rightarrow Instability limits bunch intensities for ions ($\sim 1.5 2.0 \times 10^{11}$ e)
- \rightarrow Instability is fast (τ =15 ms), transverse, single bunch (electron clouds can lower stability threshold)
- γ_t -jump implemented
- Octupoles near transition
- Chromaticity control (need ξ-jump for higher bunch intensities)

Performance limit: transition crossing for heavy ions

Intensity loss at transition in Yellow, different bunch patterns.

Performance limit: polarization of protons

Equipment for polarized beam

Snakes change spin direction

BRAHMS: → used to avoid depolarizing resonances

RHIC helical magnet

PHOBOS Siberian snakes RHIC Spin rotators STAR High intensity H source Polarized H. source BOOSTER AGS snakes AGS **Polarimeters** Tandems Ion source

Superconducting helical magnet in AGS – most complex magnet ever built by Superconducting Magnet Division

Performance limit: polarization of protons

First operational use of AGS cold snake in 2006

- Raised AGS polarization from 60% to 65%
- Removed intensity dependence of polarization

Polarization by machine

• Source \rightarrow 85%

• AGS extraction $\rightarrow 65\%$

• RHIC store

• 100 GeV (no loss) $\rightarrow 65\%$

• 205 GeV (in 2005) \rightarrow 30% M. Bai et al., PRL 96 174801 (2006).

• 250 GeV (in 2006) \rightarrow 47% Blue only, current record energy for p[↑]

Performance limit: beam-beam for pî-pî

- Total beam-beam induced tune spread reached $\Delta Q_{bb,tot} = 0.012$
- Other sources of tune spread: $\Delta Q \approx 0.005$
 - nonlinear chromaticity (correction implemented in 2007)
 - triplet errors (locally corrected)
- Sources for orbit and tune modulation

RHIC upgrades

Upgrade goals

- More luminosity and polarization
- More flexibility and reliability

Main upgrades planned:

- 1. Enhanced Design parameters
- 2. Electron Beam Ion Source (EBIS)
- 3. Au-Au collisions at very low energies (down to 1/4 of current injection energy)
- 4. RHIC II (stochastic cooling / electron cooling)
- 5. eRHIC

Upgrade 1: Enhanced Design Parameters (~2009*)

Parameter	unit	Achieved	Enhanced design				
Au-Au operation							
Energy	GeV/n	100	100				
No of bunches		103	111				
Bunch intensity	109	1.1	1.0 Exceeded Enhanced				
Average £	10 ²⁶ cm ⁻² s ⁻¹	12	8 Design goal (15-20% from stochastic				
p↑- p↑ operation cooling in Yellow)							
Energy	GeV	100	100 (250)				
No of bunches		111	111				
Bunch intensity	10^{11}	1.4	2.0				
Average <i>L</i>	10 ³⁰ cm ⁻² s ⁻¹	20	60 (150) 3×				
Polarization ${\cal F}$	%	65	70+5%				

^{*}First 250 GeV p↑-p↑ physics run currently scheduled for 2009.

Upgrade 1: Enhanced Design Parameters (~2009*)

Measures to increase polarization:

- Increase in source polarization
- Emittance reduction in LEBT
- Emittance reduction at Booster injection
- AGS with warm and cold snake with near integer working point (tune range free of spin resonances)

Measures to increase luminosity (beam-beam limited):

- Nonlinear chromaticity correction
- Orbit feedback at IP (reduction of 10 Hz vibrations effect)
- New 9 MHz cavity (longitudinal matching, reduction of hour-glass effect)
- New working point near integer (one beam in 2008)
- Triplet assembly modification (reduction of 10 Hz vibrations at source)

Upgrade 2: Electron Beam Ion Source (EBIS)

- Current ion pre-injector: upgraded Model MP Tandem (electrostatic)
- Plan to replace with:

 <u>Electron Beam Ion Source, RFQ, and short linac</u>
- → Can avoid reliability upgrade of Tandem
- → Expect improved reliability at lower cost
- \rightarrow New species (U, ${}^{3}\text{He}$)
- → Under construction
- → Expect commissioning to begin in 2009

Upgrade 2: Electron Beam Ion Source (EBIS)

Upgrade 2: Electron Beam Ion Source (2009)

Schematic of RHIC EBIS

Test EBIS of ½ length achieved ½ of required yield, yield scales with trap length

Upgrade 3: Low energy Au-Au operation

Critical Point and Onset of Deconfinement

4th International workshop GSI Darmstadt, July 9 - 13, 2007

Topics include:

- Deconfinement phase transition and QCD critical endpoint
- Equation-of-state of strongly interacting matter
- Chiral symmetry restoration

Suspected around half the current RHIC injection energy

Experiment at FAIR

Dubna plans to build machine (in Nuclotron tunnel) high luminosity

Upgrade 3: Low energy Au-Au operation

Demonstrated Au-Au collisions at $\sqrt{s} = 9.2$ GeV/nucleon T. Satogata et al.

Peak luminosity $L = 4 \times 10^{23} \text{cm}^{-2} \text{s}^{-1}$

Upgrade 3: Low energy Au-Au operation

Event seen by the STAR detector.

Low energy operation in principle possible. Plan to have a physics run in 2009.

 \rightarrow Cooling options in AGS/RHIC under investigation to increase luminosity, at even lower energies

(down to 1/4 or normal injection).

Upgrade 4: RHIC II — cooling (≥ 2011)

Parameter	unit	Achieved/ Enhanced design	RHIC II
Au-Au operation			
Energy	GeV/n	100	100
No of bunches		103	111
Bunch intensity	109	1.3	1.0
Average £	10 ²⁶ cm ⁻² s ⁻¹	12	70 ← 6×
p↑- p↑ operation	'		
Energy	GeV	250	250
No of bunches		111	111
Bunch intensity	10 ¹¹	2.0	2.0
Average £	10 ³⁰ cm ⁻² s ⁻¹	150	400 2.5×
Polarization <i>9</i> olfram Fischer	%	70	70 BROOKHAVEN NATIONAL LABORATORY

Upgrade 4: RHIC II – luminosity goals

Upgrade 4: RHIC II (luminosity + detector upgrade)

Stochastic cooling

- Plan to have 1st plane of transverse stochastic cooling for Au by end of 2008
- 2nd plane 1 year later
- 2 more planes (if needed) another year later
- New superconducting 56 MHz system (avoids satellites), by 2011
- Limited to Au, and about 10⁹ ions/bunch (IBS increases, cooling rate decreases with intensity)

Electron cooling

- Can provide another factor 2-4 above stochastic cooling for Au
- Can cool protons at 100 GeV to some extent, and pre-cool protons at lower energies (useful together with e-lens)
- Is needed for eRHIC luminosity goals
- Seen significant cost reduction recently

Upgrade 4: RHIC II — stochastic cooling (Au)

Transverse stochastic cooling appears also possible for heavy ions.

Upgrade 4: RHIC II — electron cooling (≥ 2012)

Use non-magnetized cooling (no solenoidal field)

(demonstrated with 8.9 GeV antiprotons in Fermilab Recycler – Nagaitsev et al.)

For 100 GeV Au beams need:

I. Ben-Zvi et al.

- 54 MeV electron beam
- 5nC per bunch
- rms emittance < 4 μm

- \rightarrow 2.7 MW beam power
- → need Energy Recovery Linac (ERL)

Upgrade 4: RHIC II − electron cooling (≥ 2012)

Upgrade 4: RHIC II − electron cooling (≥ 2012)

Simulated luminosities (A. Fedotov)

For:

- Beam-loss only from burn-off (luminosity)
- Constant emittance (cooling)

$$\mathcal{L}(t) = \frac{\mathcal{L}(0)}{(1+t/\tau)^2}$$

 $\rightarrow \tau \approx 5$ h for Au-Au

Store length limited by burn-off

Electron cooling can provide another factor 2-4 above stochastic cooling.

RHIC II — electron cooling (≥ 2013)

Bunch length with electron cooling

Can maintain 20 cm rms bunch length.

Shaping of longitudinal distribution is possible.

New idea: Coherent Electron Cooling

V. Litvinenko, Ya. Derbenev

COOL'07

Table 1. Comparison of estimations for various cooling mechanisms in RHIC and LHC colliders.

The sign ∞ is used to indicate helplessly long damping times

			-8		
Machine	Species	Energy GeV/n	Synchrotron radiation, hrs	Electron cooling, hrs	CEC, hrs
RHIC	Au	100	20,961 ∞	~ 1	0.03
RHIC	protons	250	40,246 ∞	> 30	0.8
LHC	protons	450	48,489 ∞	> 1,600	0.95
LHC	protons	7,000	13 (energy)/26 (transverse)	0000	< 2

To estimate electron cooling in LHC we used an energy scaling $\gamma^{7/2}$ typical for RHIC's electron cooler design [8,9], i.e., cooling protons in LHC at 7 TeV is $\sim 10^{10}$ harder that cooling antiprotons in the Fermilab recycler [7]. Hence, our usage of $\infty \infty$ in an p p r o p r i a t e c o l u m n .

Upgrade 5: eRHIC (≥ 2014)

Main features:

V. Litvinenko, V. Ptitsyn

- High-luminosity electron-ion collider
 - $-10^{32}\text{-}10^{34}\text{cm}^{-2}\text{s}^{-1}$ for e\(\tau\text{-p}\)
 - -10^{30} - 10^{32} cm⁻²s⁻¹ for e \uparrow -A(\uparrow)
- 30-100 GeV center-of-mass energy
- Longitudinally polarized electrons, protons, possibly light ions
- Currently working on
 - Ring-ring option (B-factory like e-ring)
 - Linac-ring option (higher luminosity potential)

Upgrade 5: eRHIC (≥ 2014)

Upgrade 5: eRHIC (≥ 2014)

ERL-based eRHIC parameters

	Electron-Proton Collisions			Electron-Au Collisions				
	High energy setup		Low energy setup		High energy setup		Low energy setup	
	p	e	p	e	Au	e	Au	e
Energy, GeV	250	10	50	3	100	10	50	3
Number of bunches	166		166		166		166	
Bunch intensity, 10 ¹¹ (10 ⁹ for Au)	2.0	1.2	2.0	1.2	1.1	1.2	1.1	1.2
95% normalized emittance, πμm	6	115	6	115	2.4	115	2.4	115
Rms emittance, nm	3.8	1.0	19	3.3	3.7	1.0	7.5	3.3
β*, x/y, cm	26	100	26	150	26	100	26	60
Beam-beam parameters, x/y	0.015	2.3	0.015	2.3	0.015	1.0	0.015	1.0
Rms bunch length, cm	20	1.0	20	1.0	20	1.0	20	1.0
Polarization, %	70	80	70	80	0	0	0	0
Peak Luminosity/n, 1.e33 cm ⁻² s ⁻¹	2.	6	0.5	53	2.	9	1.	5
Aver.Luminosity/n, 1.e33 cm ⁻² s ⁻¹	0.0	87	0.1	18	1.	0	0.	5
Luminosity integral /week, pb ⁻¹	53	30	10	5	58	80	29	0

Luminosity of ring-ring version 10× lower

eRHIC interaction region design

C. Montag et al.

Wolfram Fischer

- > Yellow ion ring makes 3m vertical excursion.
- ➤ Design incorporates both normal and superconducting magnets.
- Fast beam separation. Besides the interaction point no electron-ion collisions allowed.
- Synchrotron radiation emitted by electrons does not hit surfaces of cold magnets

IR Design Schemes

	Distance to nearest magnet from IP	Beam separation	Magnets used	Hor/Ver beam size ratio
Ring-ring, 1*=1m	1m	Combined field quadrupoles	Warm and cold	0.5
Ring-ring, 1*=3m	3m	Detector integrated dipole	Warm and cold	0.5
Linac-ring	5m	Detector integrated dipole	Warm	1

- ➤ No crossing angle at the IP
- ➤ Linac-ring: larger electron beta*; relaxed aperture limits; allows round beam collision geometry (the luminosity gains by a factor of 2.5).
- ➤ Detector integrated dipole: dipole field superimposed on detector solenoid.

ERL-based eRHIC R&D items

- High intensity polarized electron source
 - → larger cathode surface with existing densities ~50mA/cm², good lifetime
- ERL technology for high energy, high current beams
 - → R&D ERL under construction at BNL
- Development of compact recirculation loop magnets
 - → Design, build and test small gap magnet and vacuum chamber
- Electron-ion beam-beam effects
 - → instability and break-up of electron-beam
 - → realistic simulations, possibly tests with e-lens
- Polarized ³He production and acceleration
 - \rightarrow EBIS as ionizer of polarized ³He gas
 - \rightarrow depolarizing resonance with anomalous magnetic moment diff. from p

Summary RHIC

Status:

- Since 2000, 4 ion combinations, 8 energies
- Luminosity/year increased by >2 orders of magnitude
- Protons with 65% polarization at 100 GeV

Planned upgrades:

- Enhanced Design parameters (~2009)
 EBIS (modern pre-injector, <u>U and ³H</u> [†] 2009)
- 3. Low energy Au-Au operation (QCD critical point ≥ 2009)
- 4. RHIC II (order of magnitude increase in Au-Au ≥ ≥2011)
- 5. eRHIC (high luminosity electron-ion collider ≥2014)