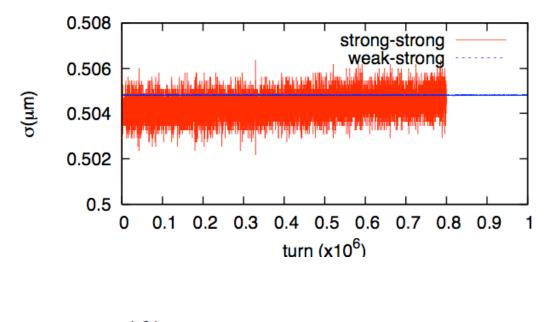
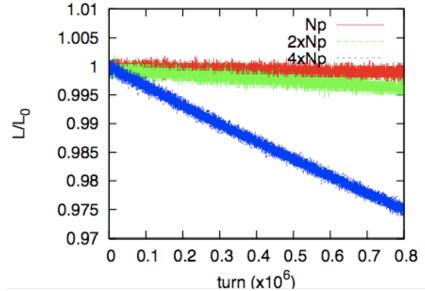
Collision with a crossing angle Large Piwinski angle K. Ohmi KEK BEAM'07 CERN Oct. 1-6, 2007 Francesco Ruggiero Memorial symposium

Introduction

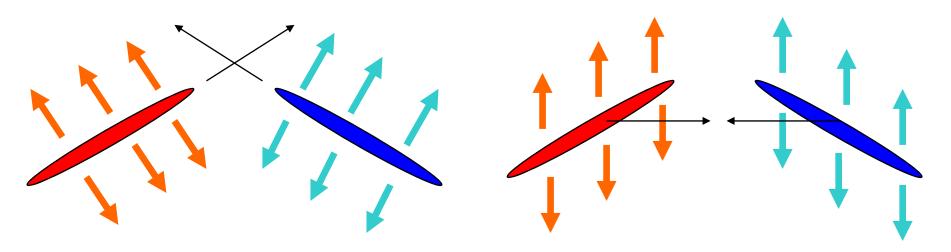

- Effect of crossing angle


 $\phi = \frac{\theta_{x(y)}\sigma_z}{\theta}$ θ : half crossing angle $\sigma_{x(v)}$

- Crossing scheme at two interaction points. Hor.-Hor, Hor.-Ver....
- Crab crossing and crab waist schemes in e⁺e⁻ colliders.

Beam-beam simulation for proton beams

- Weak-strong or strong-strong simulations
- Strong-strong simulation contains statistical noise, for example the dipole position fluctuates σ/N^{1/2}. Such noise gives artificial emittance growth.
- 1M macro-particles, 0.1% noise, gives one day luminosity life for nominal LHC parameters.
- Weak-strong simulation is reliable and simple.


 Emittance growth for weak-strong and strong-strong simulation

1 day life time=10⁻⁹/turn

- Luminosity decrement for strong-strong simulation
- Weak-strong simulation did not give Luminosity decrement as shown later.

Crossing angle

- Lorentz boost is used to make perpendicular field for moving direction. (J. Augustin, K. Hirata)
- Lorentz transformation seems to be not sympletic for the accelerator coordinate system p_x=P_x/p₀, remember adiabatic damping.
- Lorentz transformation is sympletic in the physical coordinate system.

Crossing angle and crab crossing

 Transformation from Lab. frame to headon frame.

(θ : half crossing angle)

 $tan\theta$

0

0

0

 $1/\cos\theta$

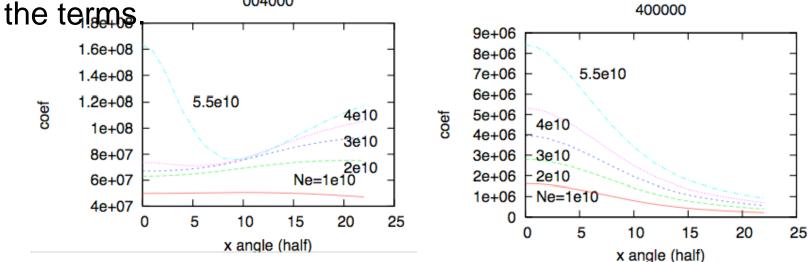
0

0

0

0

0


$x^* = tan\theta z + [1 + h_x^* sin\theta] x$	Linear part			
$p_x^* = (p_x - htan\theta) / \cos\theta$	(1	0 $1/\cos\theta$	0	0
$y^* = y + h_x^* \sin \theta x$				
$p_v^* = p_v^* / \cos \theta$	0	0	1	0
5 5	0	0	0	$1/\cos\theta$
$z^* = z/\cos\theta + h_z^* \sin\theta x$	0	0	0	0
$p_z^* = p_z - p_x \tan\theta + h \tan^2\theta$	igl(0	$-tan\phi$	0	0
$h = p_z + 1 - \sqrt{(p_z + 1)^2 - p_x^2 - p_y^2}$				

Jacobian matrix and determinant of linear matrix contain $1/\cos^3\theta$ due to Lorentz transformation.

This transformation is sympletic.

Does crossing angle affect the beambeam performance?

- The beam-beam performance is degraded at a high beambeam parameter, for example it was degraded a half for KEKB.
- How is in LHC, low beam-beam parameter and no radiation damping?
- Crossing angle induces odd terms in Hamiltonian.
- The odd terms degrade luminosity performance in e⁺e⁻ colliders. Tune scan shows clear resonance lines due to

Taylor map analysis

• Calculate beam-beam map

 $\mathbf{x} = \mathbf{f}(\mathbf{x}_0)$

• Remove linear part

$$\mathbf{X} = \mathbf{f}(R^{-1}\mathbf{x}_0) = \mathbf{x}_0 + \sum a_{ij} x_{0,i} x_{0,j} + 3$$
-rd order

• Factorization , integrate polynomial $\mathbf{X} = \exp\left(-: (H_3 + H_4 + ...):\right) \mathbf{x}_0$ $\sum a_{ij} x_{0,i} x_{0,j} = [-H_3, \mathbf{x}_0]$

Coefficients of beam-beam Hamiltonian

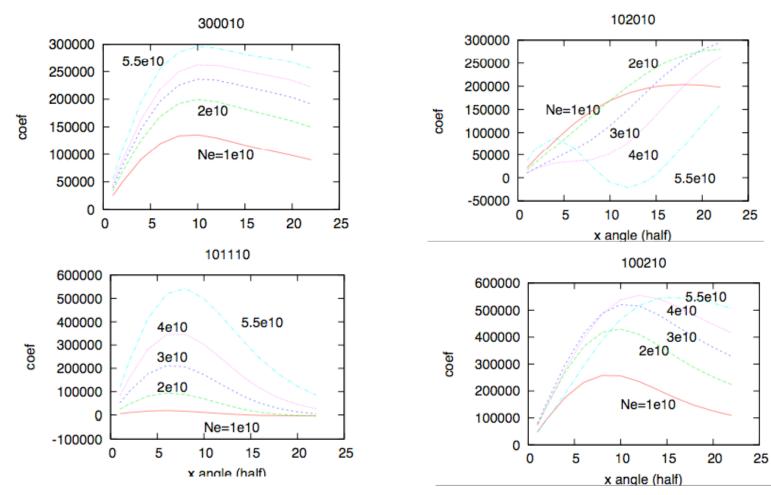
- Expression-1 $(k_x, k_p, k_y, k_q, k_z, k_e)$ $p=p_x, q=p_y, e=p_z$
- Expression-2 (n_x, n_y, n_z)
- 4-th order coefficients

```
C400 (400000), (310000), (220000), (130000), (040000)
```

```
C301 (300010), (210010),(120010),(030010)
```

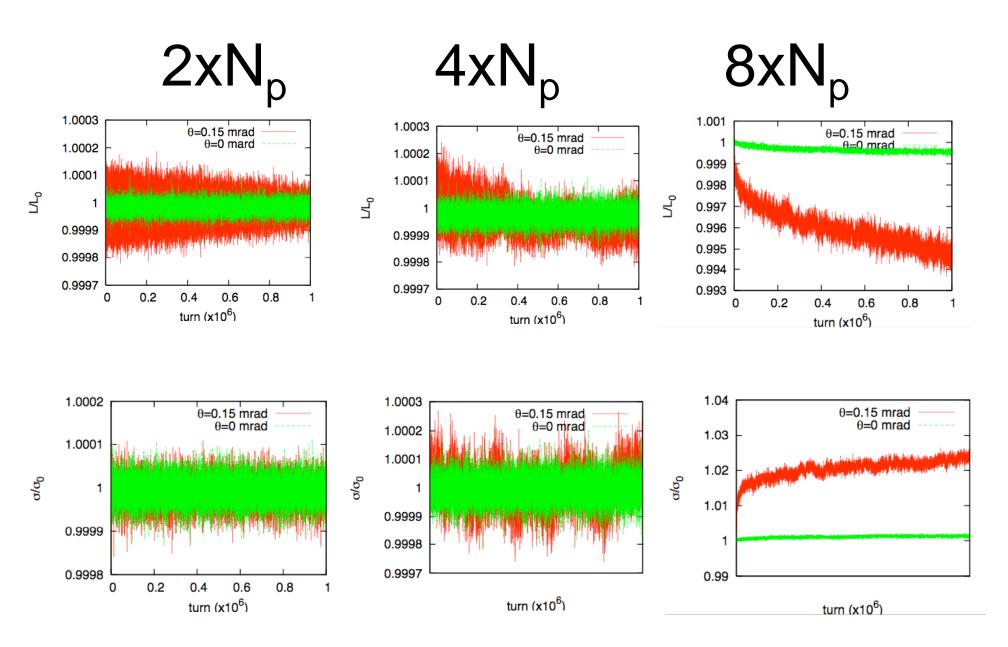
```
C220 (202000), (112000), (022000), (201100), (111100), (021100), (200200), (110200), (020200)
```

```
C040 (004000), (003100), (002200), (000300), (000400)
```


```
C121 (102010), (012010), (101110), (011110), (100210), (010210)
```

```
3<sup>rd</sup> order coefficients (except for chromatic terms)
C300 (300000), (210000), (120000), (030000)
C210 (201000), (111000), (021000), (200100), (110100), (020100)
C120 (102000), (012000), (101100), (011100), (100200), (010200)
```

• Low order nonlinear terms are efficient in e+e- colliders, while higher order terms are efficient in proton colliders.


Taylor map analysis for KEKB

• Resonance line v_x -2 v_y =k is effective for the beam-beam limit in e⁺e⁻ colliders.

Simulation (weak-strong) for LHC

- Simulation for $N_p=1.15 \times 10^{11}$ (nominal), $2 \times N_p$, $4 \times N_p$ and $8 \times N_p$.
- The crossing angle affects the luminosity performance at much higher intensity than nominal value, 8xN_p, if there is no noise and other errors.

No parasitic collision

Large Piwinki angle scheme for LHC (F. Zimmermann, PAC07)

- Shorter bunch length than that for Superbunch scheme with $\phi >> 1$.
- Piwinski angle $\phi = 2(0.4)$. Note () is nominal.
- Bunch spacing 50 (25) ns , $n_b = 1401(2808)$.
- Uniform longitudinal profile with σ_z =11.8(7.55) cm, L_z=41 cm. θ (half)=190(143) µrad.
- $N_p=4.9(1.15)\times10^{11}$, $\beta^*=0.25$ cm
- L=10(1)x10³⁴ cm⁻²s⁻¹.

Crossing scheme

- Hor.-Hor.
- Hor.-Vert. (Hybrid)
- Hybrid Incline (slanted col.)

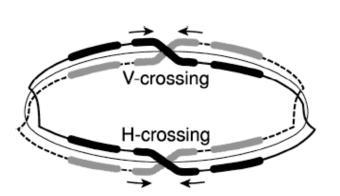
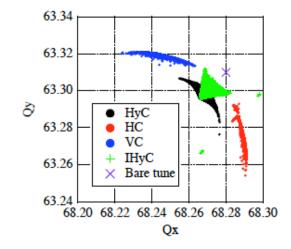



FIG. 1. Schematic view of a superbunch hadron collider.

K. Takayama et al., PRL88, 144801 (2002)

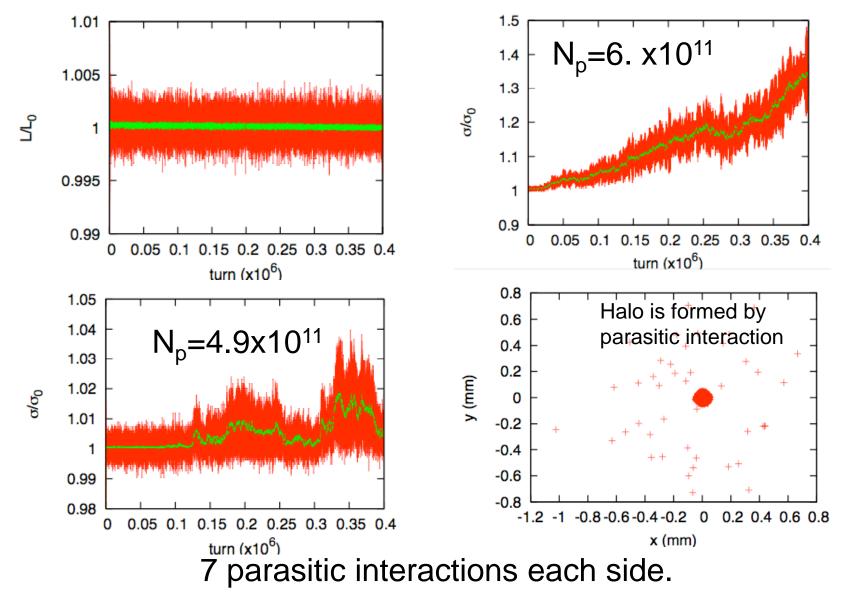
Y. Shimosaki,

Inclined hybrid: Tune shift is small but how is x-y coupling?

F. Ruggiero and F. Zimmermann, PRST,5, 061001 (2002)

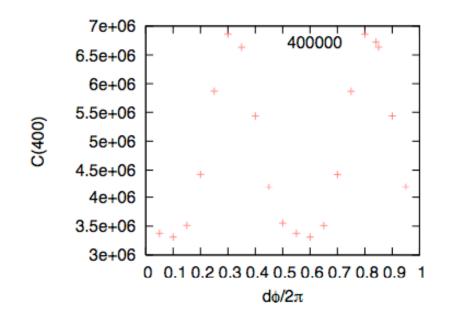
Nonlinear term of each collision scheme

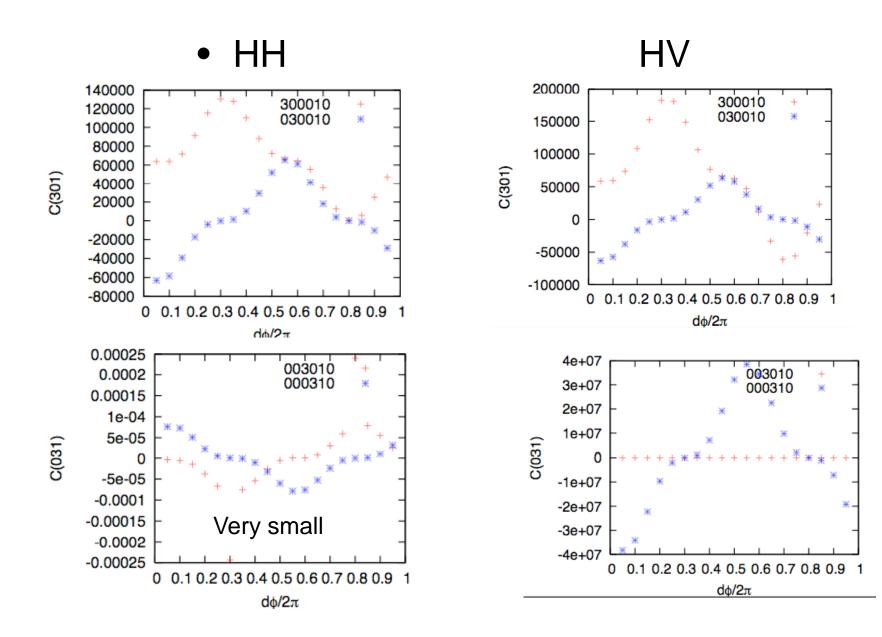
• Hor.-Hor.

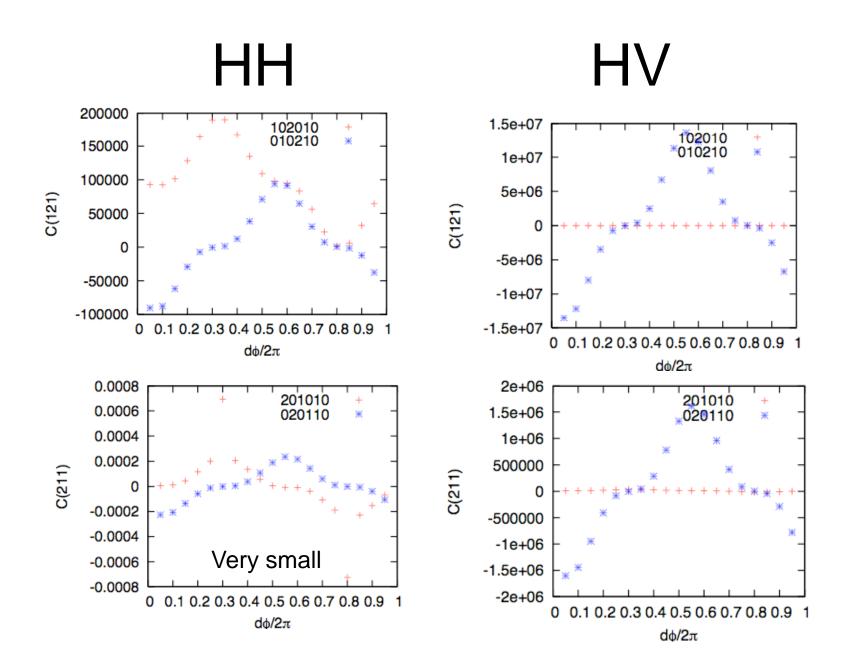

Tune spread is wide range, but terms even for y exists.

• H-V

All nonlinear term can be exist. More resonance lines may active than Hor.-Hor.


- An example showed H-V crossing is serious for Halo formation. The halo was formed by parasitic interaction.
- H-H with and without and H-V without parasitic interactions was no problem.


An example of simulation result for H-V crossing



Phase advance between two interaction points

- Nonlinear map can depend on the betatron phase difference between two IP's.
- Preliminary results for Taylor map analysis are presented.

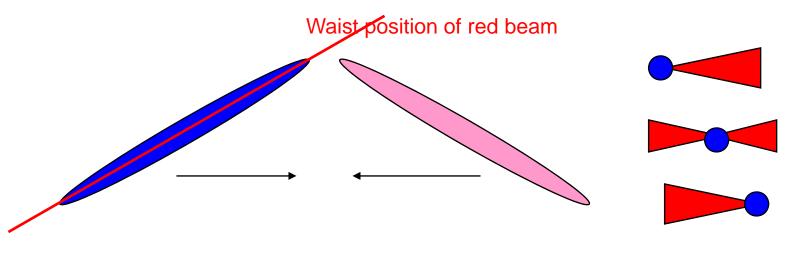
Large Piwinski angle design in e⁺e⁻ colliders (Super B)

- Keeping bunch length, $\sigma_z \sim 6$ mm.
- Small emittance, ϵ_x =1nm, ϵ_y =2pm (similar as ILC damping ring)
- Small IP beta, $\beta_x=20$ mm, $\beta_y=0.2$ mm.
- Very high Piwinski angle ϕ ~34.
- Reasonable beam-beam parameter ξ <0.1.
- Lower current $N_e = 2x10^{10}$, while $8x10^{10}$ for KEKB and PEPII.

Waist control, Crab waist (P. Raimondi et al.) $\mathbf{M} = e^{-:H_I:} \mathbf{M}_0 e^{:H_I:}$

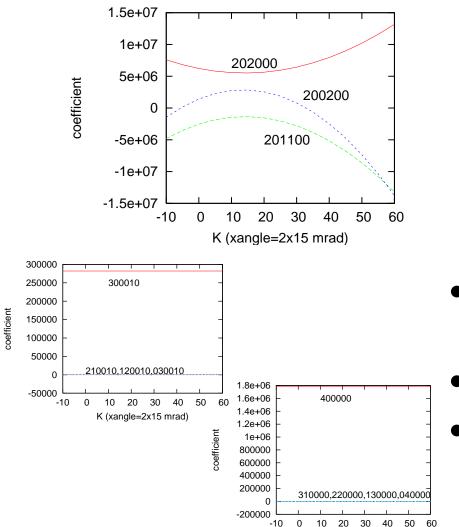
$$H_{I} = axp_{y}^{2}$$

$$\overline{y} = y + \frac{\partial H_{I}}{\partial P_{y}} = y + axP_{y} \qquad \overline{p_{x}} = p_{x} - \frac{\partial H}{\partial x} = p_{x} - ap_{y}^{2}$$

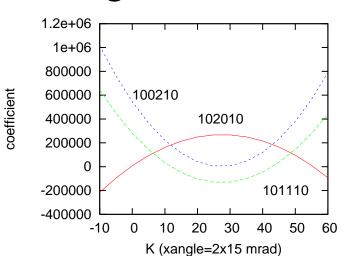

• Take linear part for y, since x is constant during collision.

$$\begin{pmatrix} \overline{\beta} & -\overline{\alpha} \\ -\overline{\alpha} & \overline{\gamma} \end{pmatrix} = T \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} T^{t} = \begin{pmatrix} \beta + \frac{a^{2}x^{2}}{\beta} & \frac{ax}{\beta} \\ \frac{ax}{\beta} & \frac{1}{\beta} \end{pmatrix}$$
$$T = \begin{pmatrix} 1 & ax \\ 0 & 1 \end{pmatrix}$$

$$M(s) \begin{pmatrix} \beta + \frac{a^2 x^2}{\beta} & \frac{ax}{\beta} \\ \frac{ax}{\beta} & \frac{1}{\beta} \end{pmatrix} M^{t}(s) = \begin{pmatrix} \beta + \frac{(s+ax)^2}{\beta} & \frac{s+ax}{\beta} \\ \frac{s+ax}{\beta} & \frac{1}{\beta} \end{pmatrix}$$
$$\frac{S+ax}{\beta} = \frac{1}{\beta}$$
$$\frac{1}{\beta}$$


 β waist is shifted to s=-ax

• Beam particles with various x collides with other beam at their waist.



Beam shape on red beam frame

4-th order Coefficients as a function of crab sextupole strength, кекв

K (xangle=2x15 mrad)

- H–K x p_y²/2, theoretical optimum, K=1/xangle.
- Clear structure- 220,121
- Flat for sextupole strength- 400, 301, 040

Summary

- Crossing angle induces resonance lines related to odd terms for x.
- The effect is not strong for ideal case without noise and errors.
- Collision with a large Piwinski angle was studied by simulation and Taylor map analysis
- H-H collision gives wide tune spread but limited resonance, while H-V collision gives narrow tune spread but more resonances.
- Phase difference between two IP's.
- Systematic studies have not performed yet.