Some of Francesco Ruggiero's Insights into Collective Effects

J. Scott Berg
Brookhaven National Laboratory
Francesco Ruggiero Memorial Symposium
3 October 2007

Francesco's Qualities

- Francesco had a deep understanding of collective phenomenon
- I'll give some examples here
 - Localized impedance
 - Two-dimensional transverse Landau damping
 - Electron cloud instability
 - Space charge at high energy
- Made him a great supervisor/leader

Localized Impedance

- His thesis was my first exposure to his work
- I found it very interesting from a theoretical point of view
- Before I even met him!

Localized Impedance Sticky Impedance Model

- Beam passes through localized object (location s)
- Induces charge distribution on object's walls
 - □ Based on beam distribution at s
- Effects subsequent beam arriving at location s
 - Effect is from wall charges at s

Localized Impedance Full Vlasov Equation

- Analyze distribution at s versus turn number
- Find eigenvalues of Vlasov equation, look for instabilities
 - \square Fourier transform in s, integer index k
 - Observation location for distribution
 - Impedance location also
 - \Box Equation couples mode k to mode \bar{k}
 - \diamond Impedance mode $k-ar{k}$

Localized Impedance Full Vlasov Equation

$$(\Omega - k\omega_0 - m \cdot \omega)\Psi_{mnk} = -i\frac{q^2N}{p} \sum_{\bar{k}} Z_{mn;\bar{m}\bar{n};k-\bar{k}} \Psi_{\bar{m}\bar{n}\bar{k}}$$

$$\Psi_{mn}(s) = \sum_{k} \Psi_{mnk} e^{2\pi i ks/L}$$

$$Z_{mn;\bar{m}\bar{n}}(s) = \sum_{k} Z_{mn;\bar{m}\bar{n};k} e^{2\pi i ks/L}$$

Localized Impedance Smooth Approximation

- No coupling between different k if effective impedance independent of s
 - □ Effective impedance: transverse weighted by

ß

- Still coupling between
 - Internal bunch modes
 - Multibunch modes
- Usually assume uniform effective impedance

Localized Impedance Single Impedance

- Francesco looked at a different limit
- All impedance in one location
- Only fractional tunes can be relevant
- All k above are strongly coupled
- Instead use a basis localized at a point s

Localized Impedance Mode Coupling

- Mode coupling between non-adjacent mode numbers
- Coupling typically weak
 - "Stop band", then stable again
- \circ Final instability between m=0 and m=-1

Localized Impedance Mode Parity

- Some modes don't give stop band
- Reason: "parity" of low-current eigenmodes
- Different parity than main modes!
 - $\Box + \omega_y + m\omega_s$ coupled with $-\omega_y + \bar{m}\omega_s$
 - □ This always strongest

Two-Dimensional Landau Damping Introduction to Landau Damping

- Tune depends on oscillation amplitude
- Finite beam size, spread in frequencies
- Oscillation involving entire beam will decohere
 - If frequency within beam frequency spread
- Stability diagram
 - Complex oscillation frequency within boundary, stabilized
 - Boundary expresses tune range in beam

Two-Dimensional Landau Damping Tune Spread in One Dimensions

Two-Dimensional Landau Damping

- LHC: little radiation damping
 - Landau damping important damping mechanism
- Landau damping caused by tune spread with amplitude
- Betatron tune spreads in two directions
- Calculation had only been done in one direction
- So he did it for two dimensions!

Two-Dimensional Landau Damping Tune Spread in One Dimensions

Two-Dimensional Landau Damping Tune Spreads in Same Direction

Two-Dimensional Landau Damping Tune Spreads in Opposite Directions

Two-Dimensional Landau Damping Effects

- Tune shifts in same direction
 - Larger instabilities damped
- Tune shifts in opposite direction
 - Real mode shifts in both directions allowed
 - Interesting with modest space charge
- Expected Gaussian tails to be truncated
 - \Box Francesco worked out model with cuts at 3σ
 - Later we worked out arbitrary cuts

Two-Dimensional Landau Damping Distribution with Truncated Tails

Two-Dimensional Landau Damping Gaussian Distribution

The LHC Electron Cloud "Crash Program"

- At the time there was skepticism about electron cloud
- He looked at others calculations, saw its potential importance for LHC
- He vigorously led a program to address it

Electron Cloud: Head Load

- Head load in magnets was important
- Energy transfer beam to electron cloud
- He guessed that this could be approximated analytically
 - Assuming known initial distribution
- Analytic computation told us we needed more simulation steps during beam passage
 - Electrons trapped in beam field

Electron Cloud Energy Gain

Space Charge and Impedance

- Questioned whether space charge should treated just as impedance
 - Different: beam itself, not wall, mediates
- Important for LHC: large coherent tune shift favorable for Landau damping (opposes inductance)
- Induces large incoherent tune spread
 - □ Tune shift with amplitude—Landau damping?

Conclusion

- Francesco understood deeply collective phenomenon
- Went beyond simple repetition of previous work
- Encouraged those around him to do so also
 - □ Gave us many great ideas
- Produced many interesting results
- A great friend and colleague

