BEAM'0O7 Summaries

Mini-Workshop on LHC+ Beam Performance

Session 5: LHC+ beam generation,
injector upgrade & FAIR
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Ultimate LHC beam G. Arduini
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bunches F. Zimmermann
Slip stacking K. Seiya (FNAL)

BNL upgrade plans  W. Fischer (BNL)
FAIR challenges P. Spiller (GSI)




LHC injector upgrade plan - R. Garoby

Updated needs for SLHC (after LUMI'06)
and list of new LHC injectors (after WP):
- Linac4 (new place) — LPSPL (low power) —

PS2 (newsize) — (SPS) — SLHC (= LHC+)

LHC beam generation with new injectors:
1. ultimate intensity at 25 ns - OK
2. 3 x ultimate at 50 ns - ?




LHC injector upgrade plan - R. Garoby

Updated needs of SLHC

Beam Bunch Protons Transverse Intensity
parameters spacing | per bunch* | emittance in LHC | factor at PS
[tentative...] [ns] [1011] [mm.mrad] injection*
Nominal 25 1.15(1.4) 3.75 0.68 (0.81)
Ultimate 25 1.7 (2.1) 3.75 1(1.2)
—_ "
Proposed Ultimate &
maximum ) 12.5 3.75 2 (2.4)
goal 12.5 ns spacing
2 X ultimate & 3.75 (blown-up to
25 3.4 (4.1 : 224
25 ns spacing “1) 7.51in LHC) @4
3 x ultimate &
_ 50 4.9 (5.9) 3.75 1.44 (1.73)
50 ns spacing
3.5 x ultimate &
_ 75 £ 3.75 1.17 (1.41)
75 ns spacing

* Case of 100 % (80 %) transmission PS — LHC
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LHC injector upgrade plan - R. Garoby
Today’s performance of the LHC injector chain

N

e s
T D

Number of Repetition Intensity/bunch
Maximum | pulses for erpiod for within required Limitations
energy the next P LHC emittances
machine (at ejection)
Linac2 50 MeV 1 1.2s Too low energy
e Too low injection energy
PSB 1.4 GeV 2 1.2s ultimate beam (space charge)
Ls10tp | il match
PS 25 GeV 3-4 365 (~ 90 % of ultimate | . 2
with SPS
o< beam) o
Reliability (age)
Too low injection energy
1.15 10" p/b
SPS 450 GeV 12 16s _ > e-cloud
(nominal beam)
Impedance
Too low injection energy
LHC 277 (DA, Snap-back) ?
e-cloud ?

P
Unexpected beam loss: > 10 %




LHC injector upgrade plan - R. Garoby
Beam for “large Piwinski angle” scenario

"3 x ultimate intensity at 50 ns spacing”:

80 % of this intensity by PS2 design (+losses)

PS2/1 - directly at PS2 injection (the best choice, needs
20 MHz RF system or tunable 40 MHz)

PS2/2 - bunch merging at extraction (3lternative choice)
— 2 x nominal longitudinal emittance

SPS/1 - bunch merging at injection
SPS/2 - non-adiabatic bunch merging

SPS/3,4 — momentum slip stacking at injection or at
higher energy (in case of problems for PS-SPS

transfer or acceleration in the SPS)
LHC/O - excluded from consideration




Ultimate LHC beam - G. Arduini

Intensity limitations in the chain

PSB: space charge = Linac 4

PS: e-cloud, beam losses which increase for more
intense and short bunches

[0 SPS: TMCI, e-cloud, + ...

O O

What can be achieved before SPL and PS2?
No margin for ultimate intensity in the PS
Nominal intensity at the limit in the SPS (g,)

= Studies and experiments started but need to be
intensified (manpower and machine time)




Ultimate LHC beam - G. Arduini
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Space Charge is considered to be
the main limitation for:

— LHC beam brightness in PSB.
Feasible for the NOMINAL
beam in spite of the margin
required to account for losses
in PS and SPS (dashed line). - . o
Not within reach for the Nowen (1071
ULTIMATE beam.
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Ultimate LHC beam - G. Arduini

INTENSITY [10 "2 ppp]
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Losses mainly affecting more intense and/or shorter bunches due to
space charge driven resonance trapping phenomena.

[ns]




Generation and stability of intense long
flat bunches - F. Zimmermann

the Issues

* LPA upgrade scenario requires
~5x10 protons per bunch, 50 ns
spacing, flat longitudinal profile

* questions:
—~how & where can such intense =2 in PS2
bunches be generated?

—how & where can they be made flat? = in LHC

—do they remain stable and to they => MD studies and
preserve their longitudinally flat

shape? simulations needed




Generation and stability of intense long
flat bunches - F. Zimmermann

how to make “flat” or “hollow” bunches?

modification of distribution or change of potential
In the LHC itself or in the injector complex

several techniques are available:
— 2" harmonic debuncher in linac [J.-P. Delahaye et al 1980]

— empty bucket deposition in debunched beam
[J.-P.Delahaye et al 1980, A. Blas et al 2000]

— higher harmonic cavity [J.-P.Delahaye et al 1980]
— biow up by modulation near f, + VHF near harmonic
[R. Garoby, S. Hancock, 1994]

— recombination with empty bucket w double harmonic rf
[C. Carli, M. Chanel 2001]

— redistribution of phase space using double harmonic rf
[C. Carli, M. Chanel 2001]

— RF phase jump [RHIC]
— band-limited noise [E. Shaposhnikova]




Zimmermann

F.
Generation of flat bunches

redistribution of phase-space surfaces

8
B measurement
< .
=4 with 6x1012 p/bunch
2 in the PS Booster
6
4 55
2 :
3 o
2 o =
< 9 g C. Carli, “Creation of
a) Hollow Bunches using
= 0 a Double Harmonic RF
S System”,
CERN/PS 2001-073
-150 -100 -50 0 50 100 150 (AE)’ C. Car“ and M.
% (ns) Chanel, HB2002
proceedings, AIP
FIGURE 3. Tomographic reconstruction of the phase after CP642

redistribution of phase space surfaces.




F. ZImmermann
Are flat or hollow bunches stable?

O

=

O

Landau damping in a double RF system could be lost for
long bunches = experience in the SPS with 4t harmonic

RF system

Landau damping of flat bunches in a single RF system
can be improved

Hollow bunches can become unstable with RF phase loop
closed (if too hollow)

How long flat bunch will stay flat in a single RF system
during coast? - IBS, noise, radiation damping...

What degree of flatness can be achieved in reality?
40% increase in luminosity for pure restangular shape




F. Zimmermann

Stability of hollow bunches

unstable hollow bunches with rf & phase loop

Turns Turns
100 100

A. Blas,
S. Hancock,
M. Lindroos,
0 1000 ns 0 o 1000 ns S. Koscielniak,
<> ms fater “Hollow Bunch
Distributions at
High Intensity in
Figure 3: Development of an instability as the low- ?;Alzsz%ggster ’
density central portion of a bunch is anti-damped. The vienna
plots consist of bunch profiles taken 25 turns apart plotted
on the y-axis. On the x-axis, the intensity on a much
shorter time scale along the bunch is represented as a

grey-scale.




F. Zimmeremann
Flat bunches in a single RF system

Landau damping for flat bunches
stability diagrams from Sacherer dispersion relation
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g distribution, n=1/2
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l. Sanntniago Gonzalez, “Loss of Landau Dam”ping in the LHC Injﬂectors”, CERN AB
Note to be published; see also F. Sacherer, IEEE Tr. NS 20,3,825 (1973),
E. Metral, CERN-AB 2004-002 (ABP), K.Y.Ng, FERMILAB-FN-0762-AD (2005)




Slip stacking - K. Seiya (FNAL)

Slip stacking procedure

(M1 has 18 53MHz RF cavities)
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Slip stacking - K. Seiya

Beam at recapture

Recapture voltage: 1MV
Intensity: 8.5E12 @ I njection

= |ongitudinal

[=29
==

30

5 [ Measurement @4.23E12 | s imulati L -
° 24 Entries 14364 @ _H_Simulation @ 4.23E12 | —— e tt
£ 40— Mean x  -0.1391 £ 40 Meanx -0.06686 el | I I a n Ce
= 30F Meany -0.1952 = s0F Meany  0.2603 25
s 0 RMSx  2.631 0.0 ¥ S0 RMS x 237
] 20E ELRMSy  14.75 & 20E- .|RMSy 14.45 - bIOW_ u p

10F 10E & f t 3

] £ - actor

10 A0E

20E ZEIIi ©

0 . =>total beam

-40F 40? I . 5 0/

it E - 0SS. 6]
8 6 -4 2 0 2 6 8 -8 -6 -4 -2 0 2 4 6 8
Phase [nsec] Phase [nsec]

(8 GeV +ramp
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Beam loss ~ 5% gap loss)




Slip stacking - K. Seiya

Proton Plan Goal

Intensity @ injection: 4.3E12 ppp x 11
@ extraction: 4.5E13 ppp

Total beam power: 400kW  80kW -> Pbar
320kW-> Numi

MI cyclerate< 2.2 sec
Total beam |OSS' < 5%

g;gg;n 7bat°he3 = In operation from 2004,
pbar intensity increased
by 70%

M ulti-batch

operation 11IbatChes = Scheme was already

verified, soon in operation

Bucket #0 g4 588




Since 2000, 4 ion combinations, 8 energies
Luminosity/year increased by >2 orders of magnitude
Protons with 65% polarization at 100 GeV

Planned upgrades:
1.

Enhanced Design parameters (~2009)
EBIS (modern pre-injector, U and 3HT  2009)
Low energy Au-Au operation (QCD critical point > 2009)
RHIC II (order of magnitude increase in Au-Au £ >2011)
eRHIC (high luminosity electron-ion collider >2014)




RHIC delivered luminosity

Delivered luminosity increased by >2 orders of magnitude in 5 years.
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Delivered to PHENIX, one of RHIC’s high-luminosity experiments.
Wolfram Fischer BROOKHEAVEN

NATIONAL LABORATORY)




RHIC status and up

grade plan
Performance limits - W Flscher

Lifetime due to IBS = longitudinal
stochastic cooling of bunched beam
Transition crossing for heavy ions:

B intensity limitation due to fast transverse single
bunch instability

B Intensity loss at the end of batches (e-cloud?)
Polarization of protons

Beam-beam for polarized protons




Longitudinal stochastic cooling in RHIC

Evolution of longitudinal profiles over 5 hours M. Blaskiewicz
M. Brennan

COOL’07

Satellites are result
of 2 rf harmonics
(360 + 7x360)

sl

100 150 200
time (ns)
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RHIC II - e-cooling,
stochatic cooling




New idea: Coherent Electron Cooling

V. Litvinenko, Ya. Derbenev
COOL’07

Most versatile option

Hadrons

Electrons

Table 1. Comparison of estimations for various cooling mechanisms in RHIC and LHC colliders.
The sign = 15 used to indicate helplessly long damping times.

Machine Species Energy GeVin | Synchrotron radiation, hrs | Electron cooling, hrs | CEC, hrs
RHIC Au 100 20,961 = ~1 0.03
RHIC protons 250 40,246 = >30 0.8
LHC protons 450 48 489 = > 1,600 0.95
LHC protons 7,000 13 (energy)/26 (transverse) 0% <2

To estimate electron cooling in LHC we used an energy scaling y* typical for RHIC's electron cooler design [8,9], i.e., cooling
protons in LHC at 7 TeV is -10" harder that cooling antiprotons in the Fermilab recycler [7]. Hence, our usage of == in an
a p p r o p r i a t e c o I uw m n

. ; 27
Wolfram Fischer BROOKHAVEN JEE)
NATIONAL LARORATORY




FAIR challenges
P. Spiller

FAIR Baseline Layout e =
: R&D stage is
S completed end 2007
C ) => start of

construction!

To be decided which

B Ok ring comes first

=raiw-




FAIR challenges - P. Spiller

Magnets : high ramp rate of curved, s.c. magnets, long term mechanical reliability,
together with sufficiantly good field quality
RF Systems : high voltages, low impedance, low frequency, as short as
possible, moderate pulse power
UHV : huge pumping speed, low desorption rates, ultra high static vacuum
highly efficient collimation system
Beam dynamics : low loss budget at highest heavy ion beam intensities and
with impedances of huge extraction and rf systems
(quenching, activation, desorption, iife time of organic materiais eic.)
Stochastic cooling : fast cooling of antiprotons and rare isotopes in a ring
with different optical settings but same pick-ups structures
HE electron cooling : Electrostatic e-beam accelerator for appropriate e-

beam quality

And others..........




SIS18 - Intensity requirements
for FAIR - P. Spiller

Fair Stage | Today 0 1 2,3
(Existing Facility (Existing Facilty supplies | (SIS100 Booster)
after upgrade) Super FRS, CR, NESR)

Reference lon U7+ U73+ U73+ 28+

()

Maximum 1 GeV/u 1 GeV/u 1 GeV/u 0.2 GeV/u

Energy

Maximum 3x10° 2x1010 2x1010 2x1011

Intensity

Repetition 0.3 Hz 1 Hz 1 Hz 2.7—4Hz

Rate

Approx. Year 2008/2009 2011/2012 2012/2013




