Summary Session Advanced Collimation

CARE-HHH-APD BEAM'07

R. Assmann

Agenda

Sessio	n 4 Advanced collimation (16:10 ->18:40)	Chairperson: Ralph Assmann (CERN)
16:10	Collimation issues for the two LHC+ scenarios and future plans (20') (Slides 1 9 9)	Ralph Assmann (CERN)
16:30	LARP contributions to the LHC phase-2 collimation (20') (Slides 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Thomas Markiewicz (SLAC)
16:50	Recent crystal experiments (20') (Slides ()	Walter Scandale (CERN)
17:10	Electron lenses for particle collimation in LHC (20') (Slides 1)	Vladimir Shiltsev (Fermilab)
17:30	Discussion (50')	

The Staged LHC Path

	Energy density at collimators (nominal 7 TeV)	Stored energy in beams	Number of LHC collimators
State-of-the-art in SC colliders (TEVATRON, HERA,)	1 MJ/mm²	2 MJ	
Phase 1 LHC collimation	400 MJ/mm ²	150 MJ	88
Nominal LHC	1 GJ/mm ²	360 MJ	122
Ultimate & upgrade scenarios	~2 GJ/mm²	800 MJ	≤ 138
Limit (avoid damage/quench)	~50 kJ/mm²	~10-30 mJ/cm ³	

Factor > 1000 energy density

Equivalent 80 kg TNT explosive

The LHC Upgrade Scenarios

Scenario	Protons stored	Energy stored	Energy in 200 ns	β*	Peak luminosity
Phase 1 collimation	1.4 × 10 ¹⁴	150 MJ	0.4 MJ	0.55 m	0.4×10^{34}
Nominal	3.2×10^{14}	360 MJ	1.0 MJ	0.55 m	1.0 × 10 ³⁴
Ultimate	4.8 × 10 ¹⁴	532 MJ	2.2 MJ	0.50 m	2.3×10^{34}
Scenario I	4.8 × 10 ¹⁴	532 MJ	2.2 MJ	0.08 m	15.5 × 10 ³⁴
Scenario II	6.9×10^{14}	767 MJ	2.3 MJ	0.25 m	10.7×10^{34}

Improve stability and efficiency!

Address collimator robustness or upgrade beam dump!

Collimation Issues for LHC Upgrade I

- Higher stored energy (higher peak losses, higher annual losses, higher activation):
 - Better or same beam stability (upgrade must not reduce beam stability should be a decision criterion).
 - Better spreading of losses → Operational procedures to avoid local hot spots.
 - Improved collimation efficiency
 White paper, LARP, FP7 work.
- - Improved radiation hardness of collimators

 White paper, LARP, FP7 work.
 - Improved power absorption
- → White paper, LARP, FP7 work.
- Improved local protection or more radiation-hard warm magnets
 - → Experience will show whether needed (less leakage with phase 2).
- Improved shielding of electronics

 Experience will show whether needed.
- Radiation impact study.
- Upgrade of beam dump and protection devices.
- Upgrade of super-conducting link cable in IR3.

Collimation Issues for LHC Upgrade II

- <u>Higher beam intensity</u> (intensity dependent effects from collimatordriven LHC impedance):
 - Operation with increased chromaticity.
 - Upgrade of transverse feedback.
 - Operational collimator gaps opened, if efficiency/protection/halo allows to do this.
 - Better conducting collimator jaw material → White paper, LARP, FP7 work.
- Higher shock beam impact from irregular dumps:
 - Upgrade of the LHC beam dump to reduce amount of escaping beam.
 - Address collimator robustness
- → White paper, LARP, FP7 work.

Collimation Issues for LHC Upgrade III

- Layout, aperture and optics changes in experimental insertions:
 - Local collimation and protection must be re-evaluated in detail such that tertiary collimation (effect on background) is kept functional.
 - Probably need to rebuild tertiary collimators for ATLAS and CMS.
 - Full simulation of multi-turn halo losses in local aperture, power loads, machine protection and energy deposition is absolutely essential.
 - Full study of halo dynamics with potentially increased off-momentum betabeat.
 - Collimation request: local triplet masks also for the incoming beam (best possible protection and cleaning)!
- Important not to underestimate the overall effects from local changes in the experimental insertions!

Future Plans

- Powerful LHC collimation system is being installed. Should allow extrapolation in stored energy by factor 100.
- Nevertheless, it can well be that nominal and ultimate LHC intensities already are limited due to beam loss and collimation.
- Work already ongoing or being prepared for phase 2 collimation with support from CERN white paper, LARP and FP7 (if approved):
 - Better efficiency
 - Better radiation hardness
 - Better power absorption
 - Better conducting jaws
 - More robust jaws or in-situ handling of damage
 - Improved operational setup with jaw-internal diagnostics
- No magic bullet → Several improvements together will get us ready for LHC upgrade scenarios!

Agenda

Sessio	n 4 Advanced collimation (16:10 ->18:40)	Chairperson: Ralph Assmann (CERN)
16:10	Collimation issues for the two LHC+ scenarios and future plans (20') (Slides 1 9 9)	Ralph Assmann (CERN)
16:30	LARP contributions to the LHC phase-2 collimation (20') (Slides 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Thomas Markiewicz (SLAC)
16:50	Recent crystal experiments (20') (Slides ()	Walter Scandale (CERN)
17:10	Electron lenses for particle collimation in LHC (20') (Slides 1)	Vladimir Shiltsev (Fermilab)
17:30	Discussion (50')	

LHC Phase II Base Concept

physical constraints current jaw design

Up Beam end beam side view

Final Wind of First 200mm Copper Mandrel

Beam'07 - 01 October 2007

LARP Phase II Collimation - T.

Markiewicz

Inclusion of longitudinal grooves in the inner length of jaws for better outgasing

Test Chamber setup similar to previous test.

	Old	New
Baseline	3.2E-9 Torr	2.4E-9 Torr??
w/ jaw assy.	3.7E-9 Torr	3.4E-9 Torr
Presumed jaw assy. pressure	4.5E-10 Torr	10E-10 Torr??
LHC requirement	7.5E-10 Torr	7.5E-10 Torr

LARP Collimator Delivery Schedule

Done	Braze test #1 (short piece) & coil winding procedures/hardware		
	Prep heaters, chillers, measurement sensors & fixtures, DAQ & lab		
	Section Braze test #2 (200mm Cu) and examine –apply lessons		
	Braze test #3 (200mm Cu) – apply lessons learned		
	Fab/braze 930mm shaft, mandrel, coil & jaw pieces		
2008-01-01	1 1st full length jaw ready for thermal tests		
	Fab 4 shaft supports with bearings & rotation mechanism		
	Fab 2 nd 930mm jaw as above with final materials (Glidcop) and		
	equip with rf features, cooling features, motors, etc.		
	Modify 1st jaw or fab a 3rd jaw identical to 2nd jaw, as above		
	Mount 2 jaws in vacuum vessel with external alignment features		
2008-09-01	2 full length jaws with full motion control in vacuum tank available for mechanical & vacuum tests in all orientations ("RC1")		
	Modify RC1 as required to meet requirements		
2009-01-01	Final prototype ("RC2") fully operational with final materials, LHC control system-compatible, prototype shipped to CERN to beam test		

Agenda

Sessio	n 4 Advanced collimation (16:10 ->18:40)	Chairperson: Ralph Assmann (CERN)
16:10	Collimation issues for the two LHC+ scenarios and future plans (20') (Slides 1 9 9)	Ralph Assmann (CERN)
16:30	LARP contributions to the LHC phase-2 collimation (20') (Slides 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Thomas Markiewicz (SLAC)
16:50	Recent crystal experiments (20') (Slides ()	Walter Scandale (CERN)
17:10	Electron lenses for particle collimation in LHC (20') (Slides 1)	Vladimir Shiltsev (Fermilab)
17:30	Discussion (50')	

...but not enough data available yet to substantiate the idea...

1 October 2007

Reflection on bent crystals

Particle-crystal interaction

Possible processes:

- multiple scattering
- channeling
- ♦ volume capture
- de-channeling
- ♦ volume reflection

Volume reflection

Prediction in 1985-'87 by A.M. Taratin and S.A. Vorobiev,

First observations in 2006 (IHEP - PNPI - CERN)

Angular beam profile as a function of the crystal orientation

The angular profile is the change of beam direction induced by the crystal

The **rotation angle** is angle of the crystal respect to beam direction

The particle density decreases from red to blue

- 1 "amorphous" orientation
- 2 channeling
- 3 de-channeling
- 4 volume capture
- 5 volume reflection

Reflection on bent crystals

Multi Reflection on Quasi-Mosaic Crystals (2)

Steps to align the five crystals

Best alignment 150 100 50 -50 -11100 -11050 -11000 -10950 -10900 [m]rad

- Volume reflection angle 53 μrad
- ◆ Efficiency ≥ 90 %

High statistics

Conclusion

- High efficient reflection (and channeling) observed in single pass interaction of high-energy protons with bent crystals (0.5 to 10 mm long)
- Single reflection on a Si bent crystal deflects > 98 % of the incoming 400 Gev p beam by an angle 12÷14 µrad
- Multi-reflections on a sequence of aligned crystals to enhance the reflection angle successfully tested with two and five consecutive crystals.
- Axial channeling observed (scattering enhancement)

Very promising results for application in crystal collimation

Agenda

Sessio	n 4 Advanced collimation (16:10 ->18:40)	Chairperson: Ralph Assmann (CERN)
16:10	Collimation issues for the two LHC+ scenarios and future plans (20') (Slides 1 9 9)	Ralph Assmann (CERN)
16:30	LARP contributions to the LHC phase-2 collimation (20') (Slides 1 1 1 1	Thomas Markiewicz (SLAC)
16:50	Recent crystal experiments (20') (Slides ()	Walter Scandale (CERN)
17:10	Electron lenses for particle collimation in LHC (20') (Slides 1)	Vladimir Shiltsev (Fermilab)
17:30	Discussion (50')	

FNAL Experience with TEL

- Besides it's a B-B-Compensator
- TEL can be a great "KILLER"
 - blow up emittances in controlled fashion
 - drive particles out randomly or via resonance drive
 - > remove unwanted particles, bunches, e.g.:
 - only in between bunches
 - just 1 out of 3000 or satellites only
 - only those with a>5 x Sigma, etc, etc

Hollow Electron Beam as Collimator

Simulated: proton Q=0.31, kick=0.25 sigma

Electron lens collimates "smoothly"

eLens Collimation: "Pro's"

- eLens technology available TEL
 - > Reliability proven by years of operation of Collider
- No nuclear, just EM interaction, can work for ions &protons
- Seems to be strong enough to clean fast
 - > Cleaning time (0.1-30 sec) << diffusion time (1000's sec)
- Refreshable, no damage
 - > No need of exp(t)ensive damage diagnostics
- Easy size/position control by B-fields, no movers, etc.
- Smooth cleaning (multiturn)
 - > No extreme sensitivity to orbit motion
 - > No spikes in the loss rates and rad loads on secondaries
- <u>SUMMARY</u>: e-Collimation looks very promising, should be considered in detail, may complement conventional system, is perfect for ions.

Discussion

- LHC(+) collimation issues:
 - Risk associated with radiation damage to CFC material.
 - Expected limitations for intensity, beam loss rates and LHC performance.
 - SNS experience supports criticality of collimation (already facing loss limitations).
 - Diffusion models and size of impact parameter are crucial.
- SLAC/LARP phase 2 work:
 - Material choice for phase 2: Glidcop.
 - Risk when bending cooling pipes must take radiation effects into account.
 - Extent of expected jaw damage after beam impact.

Crystals:

- Acceptance of crystals in particle angle.
- Complements conventional collimation surface effects at crystal.
- Radiation-hardness of crystals.
- Experimental program (CERN, FNAL, ...).

Electron lens:

- Will still need efficient collimators, does not replace them.
- What increase in impact parameter at collimators.
- Can efficiently smooth out loss spikes (solution for possible major LHC issue).
- Inherently safe with collimators still in place.

Conclusion

- Beam loss and collimation issues are challenging and are inspiring new solutions...
- Lively session with plenty of discussion past 6pm.
 - Thanks to the speakers and the audience for this!
- The story on collimation at LHC and other high power accelerators (SNS, FAIR, ...) is just starting:
 - Lot's of <u>lessons will be learnt from the beam</u> with the phase 1 LHC collimation system.
 - SNS experience shows this: several loss issues addressed there with high priority.
 - Plenty of new ideas and concepts available for getting full performance reach of the LHC → not just ideas...
 - The advanced ideas are being <u>tested and made to work</u> through hardware prototyping (SLAC/LARP) and beam tests (FNAL/LARP, CERN, crystal collaboration).
- Future work funded through CERN white paper, FP7 and LARP.
- Session showed that collaboration is really fruitful...