

STABILITY OF TRANSVERSE COLLECTIVE MODES WITH NONLINEAR SPACE CHARGE

Vladimir Kornilov,

Oliver Boine-Frankenheim and Ingo Hofmann

GSI Darmstadt

INTRODUCTION

High quality and high intensity operation for FAIR may be limited by transverse collective instabilities

Transverse collective beam dynamics for the specific FAIR parameters (strong space charge, small aperture/radius ratios)

analytical

still uncertainties about the role of nonlinear space charge (amplitude-dependent incoherent tune shift), 3D effects for bunches

numerical

particle tracking (PATRIC, HEADTAIL)

experimental at SIS18

Transv. Schottky and BTF, instabilities

• impedance calculations (RW, kicker,...)

impedance budget how to damp instabilities

DISPERSION RELATION

approach of D.Möhl (1969), here for the horizontal plane:

$$\int \frac{\Delta Q_{\text{coh}} - \Delta Q_{\text{inc}}}{\Omega/\omega_0 - (Q_{\text{ex}} + \Delta Q_{\text{inc}})} \left(-\frac{a^2}{2} \frac{d\psi_a}{da} \right) b \,\psi_b(b) \,\psi_p(p) \,da \,db \,dp = 1$$

"external" incoherent tune shifts:

$$Q_{\rm ex}(a,b,p) = Q_0 + \Delta Q_{\rm oct}(a,b) + \Delta Q_{\xi}(p)$$
 (no external effects \Rightarrow no damping)

nonlinear space charge:

$$\Delta Q_{\rm inc}(a,b) = \Delta Q_{\rm kv} [1 + \kappa(a,b)]$$

a / b : horizontal / vertical incoherent amplitude

 ΔQ_{KV} : direct space charge tune shift for KV-beam

$$\Delta Q_{\xi} = \xi Q_0 \, \Delta p / p_0$$

STABILITY DIAGRAMS

$$V + iU \propto Z^{\perp}(\Omega)$$

$$V \propto Re(Z^{\perp}) \propto Im(\Delta Q)$$

$$U \propto Im(Z^{\perp}) \propto Re(\Delta Q)$$

normalization here:
$$\Delta U = \frac{\mathcal{R}e(\Delta Q_{\mathrm{coh}})}{|\Delta Q_{\mathrm{ky}}|}$$

characteristic tune spreads: octupole chromaticity

$$\chi_{\rm oct} = \frac{\delta Q_{\rm oct}}{\delta Q_{\rm sc}} \qquad \chi_{\xi} = \frac{\delta Q_{\xi}}{\delta Q_{\rm sc}}$$

examples here: strong space charge

PARTICLE TRACKING

code PATRIC

- particle-in-cell tracking
- coasting and bunched beams
- sliced approach
- self-consistent space charge
- rectangular and elliptic boundaries
- 'frozen' space charge (\boldsymbol{E} rigid and follows \overline{x} , \overline{y})
- transverse impedance module $\left\{Re(Z^{\perp}), Im(Z^{\perp})\right\} \longrightarrow \{V, U\}$
- developed at FAIR-AT

an example: beam oscillations for two $Im(Z^{\perp})$ and fixed $Re(Z^{\perp})$ for octupole + SC

r= == ir simulations vs. disp. relation

Comparisons of simulations with dispersion relation

PATRIC runs \Rightarrow symbols,

DR ⇒ lines (stability boundary)

Combination of nonlinear space charge with octupoles, self-consistent electric field

SIMULATIONS VS. DISP. RELATION

Comparisons of simulations with dispersion relation

PATRIC runs \Rightarrow symbols,

DR ⇒ lines (stability boundary)

Combination of nonlinear space charge with octupoles, frozen electric field

antidamping: an instability for $Re(Z^{\perp}) \leq 0$

SIMULATIONS VS. DISP. RELATION

Dispersion Relation: role of nonlinear space charge for damping due to ξ and δp

linear space charge: only a shift downwards, simple scaling

nonlinear space charge: modifies stability area, complex scaling for strong space charge

CE ES I SIMULATIONS VS. DISP. RELATION

Comparisons of simulations with dispersion relation

Combination of chromatic effects with nonlinear space charge, self-consistent electric field

DISPERSION RELATION

0.005

0.01

Illustration for the effect of nonlinear space charge

0.015

0.02

0.03

FAIR: LINEAR DAMPING DUE TO δp

reference U²⁸⁺
coasting beams
for FAIR synchrotrons,
ver / hor RW, kickers

FAIR: NONLINEAR DAMPING

For SIS100, injection energy, vertical RW

SIS100 Magnets: 12 octupoles, length 75 cm, max. 2000 T/m³

additionally:

δp-damping; non-coasting: 3D effects; transv. distribution; ...

FAIR: NONLINEAR DAMPING

For SIS18, vertical RW, top energy, injection energy

Magnets assumed: 12 octupoles, length 75 cm, max. 1000 T/m³

(remember additional effects)

FIRST STEPS TOWARDS 3D STUDIES FOR (LONG) BUNCHES

NUMERICAL CODES

PATRIC

impedances $Z_{\perp}(\Omega)$ self-consistent SC general energy, ions many steps per turn coasting / long bunches

HEADTAIL

wake fields W₁(s)

analytical SC

ultra relativistic

once per turn

short bunches

(joint work with G. Rumolo)

3D DAMPING MECHANISMS

coherent tune spread

 $\operatorname{Im}(Z_{\perp})$ causes a spread of coherent eigenfrequency $\delta\Omega_{\operatorname{coher}} = \Delta\Omega_{\max}$ $\downarrow \downarrow$ decoherence?

incoherent tune spread

different incoherent SC tune spreads ⇒ affects stability of the whole bunch?

for example: octupoles which damp at ends; δp -damping should not change.

role of other effects: synchrotron dynamics, self-cons. SC,...

PATRIC SIMULATIONS

evolution of the *n*=0 mode, barrier bucket

PATRIC SIMULATIONS

evolution of the n=0 mode, parabolic bunch

HEADTAIL: COASTING BEAM

for a coasting beam, it is necessary to resolve oscillations due to coherent mode number ω_{slow} = (n-Q) ω_0

Wake Field model for bunches

New model of Wake Fields for coasting (long) beams

HEADTAIL SIMULATIONS

expon. growing mode corresponds to the picture of the slow wave ω_{slow} = (n-Q) ω_0 (BB Impedance at Ω_Z) Ω_Z / ω_0 = 4.2 = n-2.8 a slight disagreement in the growth time

SUMMARY

- nonlinear space charge can strongly modify stability properties of an octupole and ξ , confirmed by PATRIC simulation scans
- octupole of disadvantageous polarity reduces stability, different scalings with strong space charge
- non-self-consistent approaches for space charge are not always applicable (e.g. produces antidamping)
- octupoles may be used at FAIR to damp transverse instabilities
- various 3D effects must be investigated to predict stability of (long) bunches, started with PATRIC and HEADTAIL