

Resonance analysis for the electron cooler of SIS-18 using MAD-X

S. Sorge, O. Boine-Frankenheim, and G. Franchetti

GSI Darmstadt

Motivation and introduction

- Within FAIR, beams with high requirements to beam quality
 - → need for electron cooling particularly for secondary beams in storage rings
- Besides cooling, electron cooler acts as nonlinear optical element leading to resonance excitation what may yield emittance growth (effective "heating")
 - → CELSIUS (V. Ziemann, TSL-note 98-43)
 - Resulting beam blow up yields reduction of electron cooling, so, may lead to particle loss because of beam heating due to interaction with target
 - In high current devices, large eigen space charge tune spread
 - → resonance crossing, possible reduction of space charge limit
- Calculations with parameters of SchwerlonenSynchrotron (SIS) 18

- Is a Synchrotron already existing at GSI.
 - circumference C = 216.720 m
- It will be upgraded for usage within FAIR project.
- There is an electron cooler
 - Radius of electron beam can be decreased below particle beam radius
 - Particle beam can feel non-linear field of electron beam
- Possibly experiment on this topic in near future

	SIS-18 ¹
Particle	U^{73+}
Particle energy E / (MeV/u)	11.4 (injection)
Relativistic factors β_0 , γ_0	0.15, 1.01
Cooling length L_C / m	3
Electron current I_e / A	0.3
Cathode radius r_{Cath} / mm	12.7
Adiabatic expansion factor f_E : used, (range)	3, (1 8)
Electron beam radius $(b = r_{Cath} \sqrt{f_E})$ / mm	22
Beta function in the cooler $(\hat{eta}_x,\ \hat{eta}_y)$ / m	8, 15

¹ B. Franczak, SIS Parameter list; L. Groening, GSI-Dissertation 98-20, (1998)

Model for tracking

• Model system for tracking: rotational matrix + transverse momentum kick

$$egin{pmatrix} egin{pmatrix} x_{n+1} \ x_{n+1}' \end{pmatrix} = egin{pmatrix} \cos 2\pi
u_{0,x} & \hat{eta}_x \sin 2\pi
u_{0,x} \ -rac{1}{\hat{eta}_x} \sin 2\pi
u_{0,x} & \cos 2\pi
u_{0,x} \end{pmatrix} egin{pmatrix} x_n \ x_n' + \Delta x'(x_n,y_n) \end{pmatrix}$$

with:

- $-x_i, x_i'$ phase space variables in ith step
- $-\hat{\beta}$ beta function in the cooler
- Matrix gives phase advance of the lattice $2\pi\nu_0$
- ullet Single non-linear transverse momentum kick $\Delta x'(x_n,y_n)$ for electron beam in thin lens approximation

Transverse momentum kick

Kick with effective focal strength for a round electron beam with arbitrary radial current density profile

$$K_1(x,y) := rac{\Delta x'(x,y)}{x} = rac{qq'N'}{2\piarepsilon_0 m_0 c^2eta_0^2\gamma_0^3} rac{1}{R^2} \int\limits_0^R \mathrm{d} r \,\, r \,\, n_0(r) \,\, .$$

- q, q' particle charge in considered beam (protons), opposite beam (electrons)
- $ullet N' = \left| rac{I_e L_{
 m cool}}{eta_{
 m oca}'}
 ight|$ number of electrons in the cooler
- $R = \sqrt{x^2 + y^2}$ distance from the centre of the electron beam
 - → Kick depends on both perpendicular directions
- Radial electron current density, is normalised by

$$\int\limits_0^\infty \mathrm{d} r \,\, r \,\, n_0(r) = 1$$

Electron current profile used

- beambeam kick elements in MAD-X with
 - Gaussian profile
 - Flat top profile
 - Hollow-parabolic profile
- Flat top profile for electron cooler important
- ullet Here, trapezoidal profile used with beam radius ullet and width of edge layer ullet
- Analytical expressions for resulting force

GSI Resulting focal strength and linear tune shift 8

Consider core of electron beam with constant current density

• Effective (linear) focal strength

$$K_1=rac{\Delta x^{'}}{x}=rac{qeN^{'}}{2\piarepsilon_0m_0c^2eta_0^2\gamma_0^3b^2}$$

 U^{73+} : $K_1 = -0.010 \text{ m}^{-1}$

protons: $K_1 = -0.031 \text{ m}^{-1}$

Resulting linear tune shift

$$\Delta
u_z = -rac{\hat{eta_z} K_1}{4\pi}$$

 U^{73+} : $\Delta
u_x = 0.0066$, $\Delta
u_y = 0.012$

protons: $\Delta
u_x = 0.020$, $\Delta
u_y = 0.037$

Use analytic model to find relevant resonances.

- Flat top electron current profile (trapezoidal)
- Resonance strength strongly decreases with increasing order
- Only resonances with even order

Search only for resonances of order 4 and 6

Model developed by E. Keil (Proc. of CERN Accelerator school 95-06) and extended by V. Ziemann, (TSL-notes 98-43 and 2004-60)

GSI Resonance analysis , $u_x - \nu_y$ – scan

To detect resonances, the relative beam width $w_{z,\mathrm{rel}} = \sigma_{f,z}/\sigma_{i,z}$. That was calculated with a variable horizontal and vertical tune.

- Tune varied in range $\nu_x \in [4.05, 4.3]$, $\nu_y \in [3.2, 3.49]$
- ullet Range includes nominal working point $(
 u_x,
 u_y) = (4.2, 3.4)^1$
- No half-integer resonance included
- ullet Round Gaussian particle beam with initial width $\sigma_{i,x}=\sigma_{i,y}=b$
- 51 points in every tune direction \rightarrow 2601 runs
 - -5000 particles
 - 1000 revolutions

¹ B. Franczak, SIS Parameter list

GSI Resonance analysis , $u_x - u_y$ – scan

Relative beam width $w_{z,\mathrm{rel}} = \sigma_{f,z}/\sigma_{i,z}$ for variable horizontal and vertical tune

- Resonances of order 4 and 6 found could be identified.
- Sum resonances and resonances depending only on 1 tune \rightarrow beam blow up
- Latter cause beam blow up only in according direction.
- Resonances are shifted because beam-beam interaction yields tune shift.

Resonance analysis , u_y – scan

Relative rms beam width $w_{z,\mathrm{rel}}$ for variable u_y , $u_x = 4.2, \ \sigma_{i,x} = \sigma_{i,y} = b$

- Stronger vertical beam blow up because of $\hat{\beta}_y > \hat{\beta}_x$
- Quantitative verification of resonance widths with analytic model desirable but generally not possible
- ullet Only exception: half-integer resonance at $u_y = 3.5$

GSI Resonance analysis

Half-integer resonance

- Is driven by gradient error, i.e. by linear error. Such an error does not cause emittance growth.
- Resonance width = full width of tune range, where beta function is enhanced by factor 2 or more, is given by half-integer stopband integral

$$J_p = rac{1}{2\pi} \oint \hat{eta} \; k_1(s) \; \mathrm{e}^{-\mathrm{i} p \phi} \; \mathrm{d} s,$$

i.e. where beam width is enhanced by factor of $\sqrt{2}$.

• To prepare such a situation, performed calculation with initial beam width

$$\sigma_{i,x} = \sigma_{i,y} = 0.01 \ b \ll b$$
.

Resonance analysis

Time evolution of the vertical phase space distribution

- $\bullet \ \nu_x = 4.2, \nu_y = 3.49$
- ullet $\sigma_{i,x} = \sigma_{i,y} = 0.01 \ b$
- Particles reach edge of electron beam after very short time.
- Emittance starts to grow
- Particles stay near electron beam, i.e. growth of beam width is limited.

Resonance analysis

Time evolution of the vertical relative rms beam width

$$u_x = 4.2, \sigma_{i,x} = \sigma_{i,y} = 0.01 \ b$$

Half-integer resonance with constant width.

Possibility to determine width and compare it to analytical half-integer stopband width.

Resonance analysis

Width of half-integer resonance vs. half-integer stopband integral

$$\nu_x = 4.2, \sigma_{i,x} = \sigma_{i,y} = 0.01 \ b$$

Good agreement between widths of half-integer resonance and stopband integral for different electron numbers

Possible constraint due to resonance crossing 17

Tune shift due to electron cooler $\Delta \nu_z$	
U^{73+} ions	$oxed{0.0066, 0.012}$
Protons	0.020, 0.037
Eigen space charge tune shift $\Delta u_{z,sc}$	up to -0.25

$$\Delta
u_{z,sc} = -rac{q^2 N}{4\pi^2 arepsilon_0 m_0 c^2 eta^2 \gamma^3 \sqrt{\epsilon_z (\epsilon_x + \epsilon_y)} B_f}$$

Tune shift due to cooler is too small, but tune spread due to eigen space charge will cross resonances.

Possible constraint due to resonance crossing 18

Beam behaviour at $u_x=4.1,\ u_y=3.245,\ 5000$ test particles

- ullet Beam profile after 0 and 100000 revolutions, $\sigma_{i,x}=\sigma_{i,y}=b/2$
- Close to resonance $(p, m, n) = (13, 0, 4) \rightarrow$ only vertical beam widening
- Apparently, only particles from edge drift outwards, whereas beam core seems to be not touched.

Possible constraint due to resonance crossing 19

Time evolution of beam properties at $\nu_x=4.1,~\nu_y=3.245.~5000$ test particles

Particles with betatron amplitude $R_{
m max} > b$

 revolutions
 0
 1000
 10000
 100000

 σ_i 2049
 2059
 2051
 2056

 b
 4515
 4524
 4523
 4523

Vertical relative beam width $w_{y,rel}$

	revolutions	0	1000	10000	100000
σ_i					
0.5 b		1	1.13	1.17	1.20
b		1	1.13	1.15	1.17

Growth of beam width
 without increase of number
 of particles with

 $R_{\rm max} > b$

 Coincides with assumption, that resonance influences only particles, which feel non-linearity.

Number of those particles is given by initial conditions.

GSI Summary and outlook

- ullet Calculation of resonances driven by the electron cooler of SIS-18 for U^{73+} ions
- Tracking method applied to simplified model for SIS-18 using MAD-X
- Growth of beam width due to resonance excitation
- Identification of resonances up to 6th order possible
- Strongest resonances in tune range considered those of order 4
- Quantitative reproduction of resonance width with analytic model only for half-integer resonances

- Investigation of possible constraints due to resonance crossing
 - tune spread due to eigen space charge large enough to cross resonances
 - → possible decrease of space charge limit
 - resulting beam blow up yields decrease of cooling rate because of increase
 of beam width and possible limit for eigen space charge tune shift
 - beam blow up only due to particles being initially outside of electron beam excepted for half-integer resonances
 - \rightarrow number of those particles can be chosen by proper initial conditions.
- Further investigations of interplay of cooler induced resonances, eigen space charge tune shift, and lattice generated resonances necessary
- Experiment on cooler induced resonances in SIS-18 under discussion.