
Analysis of resonances induced by the SIS–18 electron cooler ∗

S. Sorge† , O. Boine-Frankenheim, and G. Franchetti, GSI, Darmstadt,Germany

Abstract

Besides beam cooling, an electron cooler also acts as a
non-linear optical element. This may lead to the excita-
tion of resonances possibly resulting in an increase of the
beam emittance. The aim of this work is the calculation
of resonances driven by the electron space charge field in
the cooler installed in the SIS heavy ion synchrotron at
GSI Darmstadt. For our calculations, we used a numeri-
cal model consisting of a rotation matrix representing the
ideal lattice together with a non-linear transverse kick ele-
ment representing the electron cooler. Within this model,
we studied the dominant resonance lines resulting from the
interaction with the cooler.

INTRODUCTION

The space charge field in an electron cooler acts as a
non-linear optical element in the lattice of a storage ring.
This may lead to the excitation of additional ring reso-
nances. Depending on the machine working point these
resonances cause emittance growth and an effective heat-
ing of the beam, as it was observed e.g. in the CELSIUS
cooler storage ring [1].

Electron cooling at medium energies will play an essen-
tial role in the proposed FAIR storage rings [2]. Electron
cooling is already available to improve the beam quality
of the intense ion beams at low energy in the existing SIS
synchrotron. On the other hand, the transverse tune shift
and spread due to the direct space charge force plays an
important role at low or medium energies. The resonances
excited by the non-linear space charge field of the cooler
electron can potentially limit the reachable beam intensity
and quality.

In this work, we calculated the resonances driven by the
electron space charge field in the cooler installed in the
SIS–18 heavy ion synchrotron at GSI Darmstadt. This the-
oretical study provides the necessary information for ded-
icated measurements of cooler induced resonances and ef-
fects in SIS.

MODEL

In our calculations we used a simple model consisting of
a rotation matrix providing the phase advance of the lattice
of SIS–18 and a non-linear transverse kick introducing the
force of the electron cooler in thin lens approximation. The
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Figure 1: Normalised charge density profile used for the
electron beam as provided by the beambeam element of
MAD-X as a function ofx for y = 0. An edge layer with a
width w = 0.01 b was used in the calculations.
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with z = x, y. Here,νz is the bare tune of the lattice,̂βz is
the unperturbed beta function inz direction at the location
of the electron cooler, and
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with R =
√

x2 + y2 is the transverse momentum kick de-
pending on both spatial directionsx, y. Here, we applied a
radial shape of the electron beamn0(r) having a constant
density in the centre and a thin edge region being charac-
teristic for an electron cooler as shown in figure 1. The
parameters used in the calculations are given in table 1.

Particle U73+

Injection energyE 11.4 MeV/u
Relativistic factorsβ0, γ0 0.15, 1.01
Cooling lengthLcool 3 m
Electron currentIe 0.3 A
Cathode radiusrcath 12.7 mm
Adiab. expansion factorfE : used, (range) 3, (1 ... 8)
Electron beam radius(b = rcath

√
fE) 22 mm

Beta function in the cooler(β̂x, β̂y) 8 m, 15 m

Table 1: Parameter of SIS–18 used in the calculations and
taken from [3] and [4].
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Figure 2: Relative rms beam width inx andy direction,
upper and lower picture, respectively, depending onνx and
νy (x andy axis in both figures). The colour scale is within
wrel ≤ 1 (dark grey) andwrel ≥ 1.25 (white).

RESULTS

To make the positions of the resonances visible, the rel-
ative rms beam width was calculated as a function of the
tune valuesνx, νy of the rotation matrix.

We explored for resonances the range given byνx ∈
[4.05, 4.3] andνy ∈ [3.2, 3.45], which is near the working
point (νx, νy) = (4.2, 3.4) [3], and which does not contain
a half integer resonance. On the other hand, it was shown in
[1] within an analytic model, that an electron cooler with a
round electron beam excites only resonances of even order,
where, additionally, the resonances strength decreases with
increasing order. Hence, we searched only for resonances
of order4 and6. Figure 2 shows the positions of the reso-
nances found in theνx−νy− plane. The black lines denote
the positions of the resonances given by the condition

p = mνx + nνy. (3)

So, all resonances found in our scan could be identified,
and they show a quite reasonable behaviour. We found,
that only sum resonances and uncoupled resonances lead
to an increase of the beam width.

Figure 3 shows the relative beam width depending on the
vertical tune. So, one can see, that the beam width is en-
hanced up to a factor1.5 under the conditions considered,
what is not visible in figure 2 due to the resolution.

In both figures, one can see, that the regions of en-
hanced beam width are always slightly shifted to smaller
values compared to the lines defined by the resonance con-
dition (3). This is because, in contrast to the lattice non-
linearities, the electron cooler provides a finite linear tune
shift in addition to the non-linear part.
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Figure 3: Relative beam width as a function of the vertical
tune within the rangeνy ∈ [3.1, 3.45] for a fix horizontal
tuneνx = 4.2. So, this figure is an extract of figure 2.

SUMMARY

We studied the resonances generated by the space charge
force of the electron beam in the SIS–18 cooler. The initial
rms radius of the ion beam was adjusted to the radius of
the electron beam. Resonances up to the 6th order could
be identified. Furthermore, we could qualitatively repro-
duce the dependency of the resonance width on the reso-
nance order as given by an analytic model in reference [1].
Within that model, the widths of the resonances driven by a
transverse momentum kick representing an electron cooler
are given as integrals over the angle variable of the beta-
tron motion. It predicts that the resonance width decreased,
when the order of a the resonances is enhanced. A quan-
titative reproduction of the beam width using an analytic
model was possible only for the half integer resonance, see
[6].

The motivation for this work was, that the resonances are
an additional possible constraint for the choice of the tune,
because they could limit the extension of the space charge
tune spread due to the self fields of the beam and therefore
leading to the reduction of the space charge limit.

Additionally, there are many resonances driven by the
non-linearities of the lattice in the real SIS, see e.g. [5].
In contrast to them, the resonances driven by the electron
cooler do not lead to a beam loss, but to an increase of the
beam with. Furthermore, the non-linearities and the cooler
drive partially the same resonances. So, a major task of
forthcoming studies will be to distinguish between the ef-
fects of both sources of resonances. Hence, further theo-
retical studies are necessary to investigate, the interplay of
both sources of resonances and, that subject will also be
an important task within measurements of the resonances
driven by the electron cooler of SIS–18.

This work is presented in more detail in [6].
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