

CARE-HHH-APD BEAM'07

Optics considerations for PS2

W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, A. Koschik, Y. Papaphilippou

October 4th, 2007

Outline

- Motivation and design constraints for PS2
- FODO lattice
- Doublet/Triplet
- Flexible (Negative) Momentum Compaction modules
 - ☐ High-filling factor design
 - ☐ Tunability and optics' parameter scan
- PS2-SPS transfer line optics design
- Summary and perspectives

Motivation – LHC injectors' upgrade

Upgrade injector complex.

- R. Garoby, BEAM' 07
- ☐ Higher injection energy in the SPS => better SPS performance
- ☐ Higher reliability

Design and optics constraints for PS2 ring

- Replace the ageing PS and improve options for physics
- Integration in existing CERN accelerator complex
- Versatile machine:

☐ Many different beams and	bunch pat	tterns	
☐ Protons and ions	Constrained by incoherent space-charge tune-shift (~0.2)		
Basic beam parameters	PS2	/ ''	
Injection kinetic energy [GeV]	4	Improve SPS performance	
Extraction kinetic energy [GeV]	~ 50	Analysis of possible bunch patterns:	
Circumference [m]	1346	$C_{PS2} = (15/77) C_{SPS}$	
Transition energy [GeV]	~10/10i	Longitudinal aspects	
Maximum bending field [T]	1.8	Normal conducting magnets	
Maximum quadrupole gradient [T/m]	17	1 Normal conducting magnets	
Maximum beta functions [m]	60	Aperture considerations for high	
Maximum dispersion function [m]	6	intensity SPS physics beam	
Minimum drift space for dipoles [m]	0.5	Space considerations	
Minimum drift space for quads [m]	0.8		

FODO Lattice

- Conventional Approach:
 - ☐ FODO with missing dipole for dispersion suppression in straights
 - □ 2 dipoles per half cell, 2 quadrupole families
 - \square Phase advance of 88°, γ_{tr} of 11.4
 - □ 7 cells/straight and 22 cells/arc => in total 58 cells
 - $\square Q_{H,V} = 14.1-14.9$
 - ☐ Alternative design with matching section and increased number of quadrupole families

Dispersion suppressor and straight section

Cell length [m]	23.21
Dipole length [m]	3.79
Quadrupole length [m]	1.49
LSS [m]	324.99
Free drift [m]	10.12
# arc cells	22
# LSS cells:	7
# dipoles:	168
# quadrupoles:	116
# dipoles/half cell:	2

Doublet and Triplet arc cells

- Advantages
 - \square Long straight sections and small maximum β 's in bending magnets (especially for triplet)
- Disadvantage
 - ☐ High focusing gradients (especially for doublet)

Flexible Momentum Compaction Modules

- Aim at negative momentum compaction
- Similar to and inspired from existing modules (e.g. J-PARC, see also talk by Yu. Senichev)
- First approach (one module made of three FODOs):
 - ☐ Match regular FODO to 90° phase advance
 - Reduced central straight section without bends, re-matched to obtain phase advance (close to three times that of the FODO, i.e. 270°)
- Disadvantage: Maximum vertical β above 80m

regular FODO 90º/cell

=> zero dispersion at beginning/end

reduced drift in center, average 90°/cell

=> negative dispersion at beginning/end with $\gamma_{tr} \sim 10i$

FMC modules with high filling factor

- Improve filling factor: four FODO per module
- Dispersion beating excited by "kicks" in bends
- Resonant behavior: total phase advance $< 2\pi$
- Large radii of the dispersion vector produce negative momentum compaction
- High phase advance is necessary

Improving the high filling factor FMC

- The "high-filling" factor arc module
 - □ Phase advances of **280°,320°** per module
 - \square γ_t of **8.2i**
 - □ Four families of quads, with max. strength of **0.095m**⁻²
 - ☐ Max. horizontal beta of 67m and vertical of 43m
 - ☐ Min. dispersion of -6m and maximum of 4m
 - □ Chromaticities of -1.96,-1.14
 - ☐ Total length of 96.2m
- Slightly high horizontal β and particularly long module, leaving very little space for dispersion suppressors and/or long straight sections

 Reduce further the transition energy by moving bends towards areas of negative dispersion and shorten the module

Alternative FMC module

- 1 FODO cell with 4 + 4 bends and an asymmetric low-beta triplet
 - □ Phase advances of **320°**,**320°** per module
 - \square γ_t of **6.2i**
 - ☐ Five families of quads, with max. strength of **0.1m**⁻²
 - ☐ Max. beta of **58m** in both planes
 - ☐ Min. dispersion of **-8m** and maximum of **6m**
 - □ Chromaticities of -1.6,-1.3
 - ☐ Total length of 90.56m
- Fifth quad family not entirely necessary
- Straight section in the middle can control γ_t
- Phase advance tunable between
 240° and 330°

Main disadvantage the length of the module, giving an arc of around 560m (5 modules + dispersion suppressors), versus 510m for the FODO cell arc

The "short" FMC module

- Remove middle straight section and reduce the number of dipoles
- 1 asymmetric FODO cell with \$\frac{1}{2}\$ 4 + 2 bends and a low-beta doublet
 - ☐ Phase advances of **280,260°** per module
 - \square γ_t of **9.4i**
 - □ Five families of quads, with max. strength of **0.1m**⁻²
 - ☐ Max. beta of around 60m in both planes
 - ☐ Min. dispersion of -2.5m and maximum of 5m
 - □ Chromaticities of -1.1,-1.7
 - ☐ Total length of 72.84m

Considering an arc of 6 modules
 + 2 dispersion suppressors of similar length, the total length of the arc is around 510m

■ Phase advance tunable between 240° and 420° in the horizontal and between 250° and 320° in the vertical plane

Transition energy versus horizontal phase advance

Dispersion versus transition energy

- Almost linear dependence of momentum compaction with dispersion min/max values
- Higher dispersion variation for γ_t closer to 0
- Smaller dispersion variation for higher γ_t

Transition energy versus chromaticity

- Higher in absolute horizontal chromaticities for smaller transition energies
- Vertical chromaticities between -1.8 and -2 (depending on vertical phase advance)
- Main challenge: design of dispersion suppressor and matching to straights

PS2 – SPS Transfer Line design goals

- Keep it short!
- Matched optics (β , α , D, D) at both ends (PS2, SPS)
 - → Get dispersion under control!

	$\mathbf{L}_{\mathrm{cell}}\left[\mathrm{m}\right]$	$\beta_{\text{max}}[m]$	β_{\min} [m]
SPS	64	110	19
PS2	25.89	45	8

- Match space/geometry requirements (Transfer Line defines location of PS2)
 - ☐ 15m separation between TT10/TI2 and PS2 beam axis and same between PS2 and any other beam axis
 - → Length limits for TT12 + tight geometry constraints!!!

- Use **normal conducting** NC (dipole, quadrupole) magnets
- **Low** β **insertion** for ion stripping
- Emittance exchange scheme
- Branch-off to experimental areas
- No need for vertical bends,

PS2 – SPS Transfer Line optics

 β_{κ} (m), β_{γ} (m)

- Matching section
 (with low-β
 insertion) near SPS
- 2 bending sections
 (opposite direction)
 as achromats
 (D=D'=0 at each end)

PS₂

Summary

- Different lattice types for PS2 optics investigated
 - ☐ FODO type lattice a straightforward solution
 - ☐ FMC lattice possible alternative
 - no transition crossing
 - challenge: matching to straights with zero dispersion

■ Perspectives:

- □ Complete the lattice design including chromaticity correction and dynamic aperture evaluation
- ☐ Detailed comparison based on performance with respect to beam losses
 - Collimation system
 - Non-linear dynamics
 - Collective effects