

Scenarios for the LHC Upgrade

Walter Scandale & Frank Zimmermann

BEAM'2007 CERN

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)

outline

upgrade motivation & time frame two scenarios

- beam parameters; features; IR layouts
- merits and challenges
- impact of β*
- luminosity evolution
 luminosity leveling (incl. β* dependence)
 bunch structures
 injector upgrade
 conclusion

Large Hadron Collider (LHC)

proton-proton collider

c.m. energy 14 TeV (7x Tevatron)

design luminosity 10³⁴ cm⁻²s⁻¹ (~100x Tevatron)

start of beam commissioning in 2008

LHC baseline luminosity was pushed in competition with SSC

Physics at the LHC: pp @ 14 TeV

The LHC will be the new collider energy frontier

Two Strong Reasons for LHC Upgrade

- 1) After a few years, statistical error hardly decreases.
- 2) Radiation damage limit of IR quadrupoles (~700 fb-1) reached by ~2016

 \Rightarrow

Time for an upgrade!

A Third Reason: Extending the Physics Potential of LHC

⇒ 10x higher luminosity extends discovery range by ~ 25%

in mass & precision by a factor of ~2

• Electroweak Physics

- Production of multiple gauge bosons ($n_V \ge 3$)
 - triple and quartic gauge boson couplings
- Top quarks/rare decays
- Higgs physics
 - Rare decay modes
 - Higgs couplings to fermions and bosons
 - Higgs self-couplings
 - Heavy Higgs bosons of the MSSM
- Supersymmetry (up to masses of 3 TeV)
- Extra Dimensions
 - Direct graviton production in ADD models
 - · Resonance production in Randall-Sundrum models TeV-1 scale models
 - Black Hole production
- Quark substructure
- Strongly-coupled vector boson system
 - W_LZ_L g W_LZ_L , Z_LZ_L scalar resonance, W⁺_LW + _L
- New Gauge Bosons

Examples studied in detail

PHYSICS POTENTIAL AND EXPERIMENTAL CHALLENGES OF THE LHC LUMINOSITY UPGRADE

Conveners: F. Gianotti ¹, M.L. Mangano ², T. Virdee ^{1,3}
Contributors: S. Abdullin ⁴, G. Azuelos ⁵, A. Ball ¹, D. Barberis ⁶, A. Belyaev ⁷, P. Bloch Bosman ⁸, L. Casagrande ¹, D. Cavalli ⁹, P. Chumney ¹⁰, S. Cittolin ¹, S.Dasu ¹⁰, A. De Roeck Ellis ¹, P. Farthouat ¹, D. Fournier ¹¹, J.-B. Hansen ¹, I. Hinchliffe ¹², M. Hohlfeld ¹³, M. Huhtir K. Jakobs ¹³, C. Joram ¹, F. Mazzucato ¹⁴, G.Mikenberg ¹⁵, A. Miagkov ¹⁶, M. Moretti ¹⁷, S. Morett T. Niinikoski ¹, A. Nikitenko^{3,†}, A. Nisati ¹⁹, F. Paige ²⁰, S. Palestini ¹, C.G. Papadopoulos ²¹, F. Picci R. Pittau ²², G. Polesello ²³, E. Richter-Was ²⁴, P. Sharp ¹, S.R. Slabospitsky ¹⁶, W.H. Smith ¹⁰, S. mes ²⁵, G. Tonelli ²⁶, E. Tsesmelis ¹, Z. Usubov ^{27,28}, L. Vacavant ¹², J. van der Bij ²⁹, A. Watso M. Wielors ³¹

Include pile up, detector

hep-ph/0204087

Albert de Roeck, Bodrum 2007

LHC Upgrade

- 10x higher luminosity $\sim 10^{35}$ cm⁻² s⁻¹ (SLHC)
 - Requires changes of the machine and particularly of the detectors
 - ⇒ Upgrade to SLHC mode around 2014-2016
 - \Rightarrow Collect ~3000 fb⁻¹/experiment in 3-4 years data taking.
 - much later: higher energy? (DLHC)
 - -LHC can reach $\sqrt{s} = 15$ TeV with present magnets (9T field)
 - $-\sqrt{s}$ of 28 (25) TeV needs ~17 (15) T magnets ⇒ R&D needed!
 - -Even some ideas on increasing the energy by factor 3 (P. McIntyre)

	Run I √s	Run II \sqrt{s}	Int Lumi (run I)	Int. Lumi (expected/runII)
Tevatron	1.8 TeV	1.96 TeV	100 pb ⁻¹	~4-8 fb ⁻¹
HERA	300 GeV	320 <i>G</i> eV	100 pb ⁻¹	~500 pb ⁻¹

three LHC challenges

- collimation & machine protection
 - damage, quenches, cleaning efficiency, impedance
- electron cloud
 - heat load, instabilities, emittance growth
- beam-beam interaction
 - head-on, long-range, weak-strong, strong-strong

electron cloud in the LHC

schematic of e- cloud build up in the arc beam pipe, due to photoemission and secondary emission

[F. Ruggiero]

long-range beam-beam

30 long-range collisions per IP, 120 in total

crossing angle

$$R_{\phi} = \frac{1}{\sqrt{1+\phi^2}}; \quad \phi \equiv \frac{\theta_c \sigma_z}{2\sigma_x}$$
 "Piwinski angle"

CARE-HHH workshops

CARE-HHH APD workshop 'LUMI 06' (70 participants)

Towards a Roadmap for the Upgrade of the

LHC and GSI Accelerator Complex

IFIC, Valencia (Spain), 16-20 October 2006 strong synergy with US-LARP mini collaboration meeting 25-27 Oct. 2006

IR scheme, beam parameters, injector upgrade

parameter	symbol	nominal	ultimate	12.5 ns, short	
transverse emittance	ε [μm]	3.75	3.75	3.75	
protons per bunch	$N_b [10^{11}]$	1.15	1.7	1.	
bunch spacing	Δt [ns]	25	25	125	
beam current	I [A]	0.58	0.86	1./2	
longitudinal profile		Gauss	Gauss	Gaiss	
rms bunch length	σ_{z} [cm]	7.55	7.55	1.78	
beta* at IP1&5	β* [m]	0.55	0.5	0.25	
full crossing angle	$\theta_{\rm c}$ [µrad]	285	315	445	
Piwinski parameter	$\phi = \theta_c \sigma_z / (2 * \sigma_x *)$	0.64	0.75	0.75	
peak luminosity	$L [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1	2.3	9.2	
peak events per crossing		19	44	88	
initial lumi lifetime	$\tau_{\mathrm{L}}\left[\mathrm{h} ight]$	22	14	7.2	
effective luminosity	$L_{eff}[10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	0.46	0.91	2.7	
(T _{turnaround} =10 h)	T _{run,opt} [h]	21.2	17.0	12.0	
effective luminosity	$L_{eff}[10^{34}{\rm cm}^{-2}{\rm s}^{-1}]$	0.56	1.15	3.6	
$(T_{turnaround} = 5 h)$	T _{run,opt} [h]	15.0	12.0	8.5	
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	3.34 (7.15)	
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.5	
image current heat	P _{IC} [W/m]	0.15	0.33	1.8	
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.55)	0.113 (1.13	
extent luminous region	σ _l [cm]	4.5	4.3	2.1	
comment	Andal base f	ar ovcoeds		partial wire c.	

baseline upgrade parameters 2001-2005

abandoned at LUMI'06

(SR and image current heat load well known)

Frank Zimmermann, Scenarios for the LHCOpgrade, 624M07 far exceeds max. local cooling capacity of 2.4 W/m

parameter	symbol	Early Separation	Large Piwinski Angle
transverse emittance	ε [μm]	3.75	3.75
protons per bunch	$N_b [10^{11}]$	1.7	A.9
bunch spacing	Δt [ns]	25	\mathcal{O} 50
beam current	I [A]	0.86	1.22
longitudinal profile		Gauss	γ Flat
rms bunch length	σ_{z} [cm]	7.55	8.11
beta* at IP1&5	β* [m]	0.08	0.25
full crossing angle	$\theta_{\rm c}$ [µrad]		381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2 * \sigma_x *)$	0	2.0
hourglass reduction		0.86	O 0.99
peak luminosity	$L [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	15.5	10.7
peak events per crossing		294	403
initial lumi lifetime	$\tau_{\rm L}$ [h]	2.2	4.5
effective luminosity	$L_{e\!f\!f}[10^{34}{ m cm}^{-2}{ m s}^{-1}]$	2.4	2.5
(T _{turnaround} =10 h)	T _{run,opt} [h]	6.6	9.5
effective luminosity	$L_{e\!f\!f}[10^{34}{ m cm}^{-2}{ m s}^{-1}]$	3.6	3.5
(T _{turnaround} =5 h)	T _{run,opt} [h]	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.25	0.36
image current heat	P _{IC} [W/m]	0.33	0.78
gas-s. 100 h (10 h) τ_b	P _{gas} [W/m]	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ_{l} [cm]	3.7	5.3
comment		D0 + crab (+ Q0)	wire comp.

two new upgrade scenarios

compromises between # pile up events and heat load

for operation at beam-beam limit with alternating planes of crossing at two IPs

$$L = \frac{f_{rev} \gamma}{2r_p} \stackrel{\uparrow}{\underset{\uparrow}{\underset{\downarrow}}} \stackrel{\downarrow}{\underset{\downarrow}} \stackrel{$$

where (ΔQ_{bb}) = total beam-beam tune shift; peak luminosity with respect to ultimate LHC (2.4 x nominal):

ES: x 6 x 1.3 x 0.86 = 6.7

LPA: $\frac{1}{2}$ x2 x2.9x1.3 x1.4 = 5.3

what matters is the integrated luminosity

luminosity lifetime

$$\tau = \frac{1}{2} \frac{N_b}{\dot{N}_b} = \frac{n_b N_b}{L\sigma} = \frac{4\pi \varepsilon \beta^*}{f_{rev} N_b \sigma}$$
 | Inversely proportional to luminosity (L ~10x up from nominal) and proportional to β^*

inversely proportional to and proportional to β^*

larger luminosity lifetime requires higher total beam current $\sim n_b N_b$

- \rightarrow EITHER more bunches n_b (previous 12.5 ns scheme)
- \rightarrow OR higher charge per bunch N_b (LPA scheme)
- + luminosity leveling (see later)

LHC upgrade path 1: early separation (ES)

- <u>ultimate LHC beam</u> (1.7x10¹¹ protons/bunch, 25 spacing) J.-P. Koutchouk
- squeeze β * to ~10 cm in ATLAS & CMS
- add early-separation dipoles in detectors starting at ~ 3 m from IP
- possibly also add quadrupole-doublet inside detector at ~13 m from IP
- and add crab cavities $(\phi_{\text{Piwinski}} \sim 0)$
 - → new hardware inside ATLAS & CMS detectors, first hadron crab cavities

LHC upgrade path 2: large Piwinski angle (LPA)

- double bunch spacing to 50 ns, longer & more intense bunches with $\phi_{\text{Piwinski}} \sim 2$
- $\beta*\sim25$ cm, do not add any elements inside detectors
- long-range beam-beam wire compensation
 - → novel operating regime for hadron colliders

F. Ruggiero, W. Scandale. F. Zimmermann

larger-aperture triplet magnets

fewer, long & intense bunches + nonzero crossing angle + wire compensation

ES scenario assessment

merits:

most long-range collisions negligible, no geometric luminosity loss, no increase in beam current beyond ultimate, could be adapted to crab waist collisions (LNF/FP7)

challenges:

D0 dipole deep inside detector (~3 m from IP), optional Q0 doublet inside detector (~13 m from IP), strong large-aperture quadrupoles (Nb $_3$ Sn) crab cavity for hadron beams (emittance growth), or shorter bunches (requires much more RF) 4 parasitic collisions at 4-5 σ separation, off-momentum β beating 50% at δ =3x10-4 compromising collimation efficiency, low beam and luminosity lifetime ~ β *

Are there slots for a "D0" dipole in ATLAS?

- We cannot put the D0 in the inner detector
- BUT there are potential slots starting at 3.5 m and 6.8 m (ATLAS)

G. Sterbini, J.-P. Koutchouk, LUMI'06

Where would we put the D0 in ATLAS?

G. Sterbini, J.-P. Koutchouk, LUMI'06

Frank Zimmermann, Scenarios for the LHC Upgrade, BEAM07

ES scheme needs crab cavities

crab rf vs bunch shortening rf

bunch shortening rf voltage:

$$V_{rf} \approx \left[\frac{\varepsilon_{\parallel,rms}^2 c^3 C \eta}{E_0 2\pi f_{rf}}\right] \frac{1}{\sigma_z^4} \approx \left[\frac{\varepsilon_{\parallel,rms}^2 c^3 C \eta}{E_0 2\pi f_{rf}}\right] \frac{\theta_c^4}{0.7^4 16\sigma_x^{*4}}$$

unfavorable scaling as 4th power of crossing angle and inverse 4th power of IP beam size; can be decreased by reducing the longitudinal emittance; inversely proportional to rf frequency

crab cavity rf voltage:

$$V_{crab} = \frac{cE_0 \tan(\theta_c/2)}{e2\pi f_{rf}R_{12}} \approx \frac{cE_0}{e4\pi f_{rf}R_{12}}\theta_c$$

proportional to crossing angle & independent of IP beam size; scales with $1/R_{12}$; also inversely proportional to rf frequency

$V_{\rm rf} [MV]$ $\sigma^*=11.7 \mu m, R_{12}=30 m$ 108 bunch shortening rf 2.5 eVs, 400 MHz 10^{6} 1.75 eVs, 400 MH 1.75 eVs. 12 10 4 crab cavity 10^2 200 MHz 800 MHz 0.002 0.0080.004 0.006 $\theta_{\rm c}$ [rad]

F. Zimmermann, U. Dorda, LUMI'05

LPA scenario assessment

merits: no elements in detector, no crab cavities, lower chromaticity, less demand on IR quadrupoles (NbTi expected to be possible), could be adapted to crab waist collisions (LNF/FP7) challenges: operation with large Piwinski parameter unproven for hadron beams (except for CERN ISR), high bunch charge, beam production and acceleration through SPS, larger beam current, wire compensation (almost etablished), off-momentum β beating ~30% at δ =3x10⁻⁴

motivation for flat bunches & LPA

luminosity for Gaussian bunches

$$L^{Gauss} \approx \frac{1}{2} \frac{f_{coll} \gamma}{r_p \beta^*} \Delta Q_{tot} N_b$$

luminosity for "flat" bunches

$$L^{flat} \approx \frac{1}{\sqrt{2}} \frac{f_{coll} \gamma}{r_p \beta^*} \Delta Q_{tot} N_b$$

F. Ruggiero,
G. Rumolo,
F. Zimmermann,
Y. Papaphilippou,
RPIA2002

for the same total number of particles and the same total tune shift from two IPs the luminosity will be ~1.4x higher with a "flat" bunch distribution; also: the number of particles N_b can be increased independently of ΔQ_{tot} only in the regime of large Piwinski angle

geometric luminosity reduction vs β*

geometric reduction factor

average luminosity vs β*

average luminosity [10³⁴cm⁻²s⁻¹]

including crossing angle + hourglass, assuming optimum run time for 5 h turn-around

aside: "crab waist" scheme for LHC?

Vertical waist has to be a function of x:

Z=0 for particles at $-\sigma_v$ (- $\sigma_v/2\theta$ at low current)

Z= σ_x/θ for particles at + σ_x ($\sigma_x/2\theta$ at low current)

Crab waist realized with 2 sextupoles in phase with the IP in X and at $\pi/2$ in Y

possible approach: go to flat beams, combine ingredients of LPA & ES schemes, add sextupoles

IP1& 5 luminosity evolution for ES and LPA scenario

IP1& 5 event pile up for ES and LPA scenario

experiments prefer more constant luminosity, less pile up at the start of run, higher luminosity at end

how could we achieve this?

luminosity leveling

ES:

dynamic β squeeze dynamic θ change (either IP angle bumps or varying crab voltage)

LPA:

dynamic β squeeze, and/or dynamic reduction in bunch length

run time & average luminosity

	w/o leveling	with leveling
luminosity evolution	$L(t) = \frac{\hat{L}}{(1 + t / \tau_{eff})^2}$	$L = L_0 \approx const$
beam current evolution	$N(t) = \frac{N_0}{\left(1 + t / \tau_{eff}\right)}$	$N = N_0 - \frac{N_0}{\tau_{lev}} t$
optimum run time	$T_{run} = \sqrt{\tau_{eff} T_{turn-around}}$	$T_{run} = \frac{\Delta N_{\text{max}} \tau_{lev}}{N_0}$
average luminosity	$L_{ave} = \hat{L} \frac{\tau_{eff}}{\left(\tau_{eff}^{1/2} + T_{turn-around}^{1/2}\right)^2}$	$L_{ave} = \frac{L_0}{1 + \frac{L_0 \sigma_{tot} n_{IP}}{\Delta N_{\text{max}} n_b} T_{turn-around}}$

$$\tau_{eff} = \frac{N_0 n_b}{n_{IP} \hat{L} \sigma_{tot}}$$

$$\tau_{lev} = \frac{N_0 n_b}{n_{IP} L_0 \sigma_{tot}}$$

examples	ES, low β*,	LPA, long bunches,	
	with leveling	with leveling	
events/crossing	300	300	
run time	N/A	2.5 h	
av. luminosity	N/A	2.6x10 ³⁴ s ⁻¹ cm ⁻²	
events/crossing	150	150	
run time	2.5 h	14.8 h	
av. luminosity	2.6x10 ³⁴ s ⁻¹ cm ⁻²	2.9x10 ³⁴ s ⁻¹ cm ⁻²	
events/crossing	75	75	
run time	9.9 h	26.4 h	
av. luminosity	2.6x10 ³⁴ s ⁻¹ cm ⁻²	1.7x10 ³⁴ s ⁻¹ cm ⁻²	

average luminosity & run time vs. final $\beta*$, I_b

for ES with β* squeeze

for LPA with β* squeeze

for LPA with I_b reduction

Frank Zimmermann, Scenarios for the LH

old upgrade bunch structure

new upgrade bunch structures

DG White Paper Injector Upgrade

M. Benedikt, R. Garoby

injector upgrade

- needed for ultimate LHC beam
- reduced turn around time & higher integrated luminosity
- 4x10¹¹ protons spaced by 25 ns (now ~1.5 10¹¹)
- beam production:

```
for ES straightforward for LPA e.g. omitting last double splitting in PS (or PS2)
```

numerous techniques for bunch flattening

summary - 1

- two scenarios of L~10³⁵ cm⁻²s⁻¹ for which heat load and #events/crossing are acceptable
- early separation: pushes β^* ; requires slim magnets inside detector, crab cavities, & Nb₃Sn quadrupoles and/or optional Q0 doublet; attractive if total beam current is limited; luminosity leveling via β^* or θ_c (e.g. crab voltage)
- large Piwinski angle: fewer longer bunches of higher charge; can probably be realized with NbTi IR technology if needed; Q0 also an option here; compatible with LHCb; open issues are SPS & hadron beam-beam effects at large Piwinski angle; luminosity leveling via bunch length or via β*
- off-energy β beating common concern, worse at lower β*

summary - 2

- first two or three years of LHC operation will clarify severity of electron cloud, long-range beam-beam collisions, impedance etc.
- first physics results will indicate whether or not magnetic elements can be installed inside the detectors
- these two experiences may decide upgrade path
- crab waist option could be further explored

BEAM'07 goals

- assess potential 'show-stoppers' for the two alternative upgrade paths (LPA and ES)
- compare their respective luminosity reach
- advance designs of LHC injector upgrade & GSI FAIR project