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Abstract 
    At present the new proton synchrotron PS2 with the 
energy range 4-50 GeV is discussed to upgrade LHC 
injector’s complex [1]. Two lattices with and without the 
transition energy crossing are considered. In second 
option the momentum compaction factor must be kept 
low enough or negative. On the basis of the theory of 
“resonant” lattices for synchrotrons with complex 
transition energy developed in [2], the lattice with 
imaginary gamma-transition γtr for construction of PS2 
lattice is proposed. Additionally the lattice should meet a 
number of important requirements, e.g., dispersion-free 
straight sections, a flexible scheme of chromaticity 
correction, a large enough dynamic aperture, etceteras. 

 

INTRODUCTION 
Since the longitudinal oscillation frequency is 

proportional to a root square of the slip factor 
22 /1/1 γγη −= tr , the longitudinal stability at the 

transition trγγ =  is lost. Therefore the acceleration 
through transition is considered a major problem, and the 

momentum compaction factor 2/1 trγα =  is one of the 
most important characteristics of any synchrotron. With 
regard to this problem, many methods have been 
developed for crossing the transition energy with 
minimum particle loss. However, in a high-intensity 
proton accelerator, the transition-energy crossing must be 
completely avoided because of the need for extremely 

low losses at the 43 1010 −− −  level. Moreover, the slip 
factor should be as high as possible in order to increase 
the collective instability threshold. Besides the absolute 
value of slip factor can be used as additional factor for 
matching between two accelerators or/and control of 
beam sizes during acceleration. 

To eliminate the transition energy crossing in anew 
designed PS2 synchrotron the gamma-transition must be 
moved away from acceleration range γ≈5÷50. For this 
purpose we use the theory of “resonant” lattices. With 
specially correlated modulation of quadrupoles gradient 
and orbit curvature and a particular choice of betatron 
oscillation frequencies, the theory of “resonant” lattices 
developed in [2] makes it possible to get interrelated 
dispersion variations D(s) and 1/ρ(s) along the 
equilibrium orbit and a negative momentum compaction 
factor 
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A lattice like this should eliminate transition energy 
crossing by accelerated particles since the transition 

energy takes imaginary values αγ /itr −= . In addition, 

the PS2 lattice must meet a number of physical and 
technical requirements, such as independent tuning of the 
momentum compaction factor and betatron frequencies of 
arcs, zero dispersion in straight sections, effective 
chromaticity correction by the smallest possible number 
of quadrupole families, a large dynamic aperture. The 
latter implies first of all mutual compensation of the 
nonlinear effect of chromatic sextupoles on the motion of 
particles in the accelerator in the first order of the 
perturbation theory.  

In this article we propose the imaginary γtr lattice for 
PS2 complying with the above conditions and discuss 
which lattice is optimal in view of the possible 
technological features of a particle accelerator.  

The “resonant” lattice was first proposed for the 
Moscow Kaon Factory [3]. This lattice was then adapted 
for the TRIUMF KAON Factory (Canada) [4]. Later it 
was considered as the best candidate for the 
Superconducting Super Collider (SSC) Low Energy 
Booster (USA) [5], then was adopted for the main 
accelerator of the Neutrino Factory at CERN 
(Switzerland) [6], and ultimately was implemented in the 
JPARC (Japan Protons Accelerator Research Center), 
accelerator complex [2,7]. In the High Energy Storage 
Ring (HESR) lattice of the FAIR project, the same idea is 
also accepted [8].  

The distinguishing features of this lattice are: 
• ability to achieve the negative momentum 

compaction factor using the resonantly correlated 
curvature and gradient modulations; 

• gamma transition variation in a wide region from 

xt νγ ≈  to xt iνγ ≈  (νx is the horizontal tune) with 
quadrupole strength variation only; 

• dispersion-free straight section; 
• independent optics parameters of arcs and straight 

sections; 
• two families of focusing and one of defocusing 

quadrupoles; 
• separated adjustment of gamma transition, horizontal 

and vertical tunes; 
• convenient chromaticity correction method using 

sextupoles; 
• first-order self-compensating scheme of multipoles 

and a large dynamic aperture; 
• low sensitivity to multipole errors. 

Hereinafter we will denote the horizontal tune xν  as ν , 
since the vertical tune does not affect on the momentum 
compaction factor.   

* On leave from Institute for Nuclear Research, RAS, 
Moscow, e-mail: y.senichev@fz-juelich.de 



MAIN PROPOSITIONS OF THE 
“RESONANT” LATTICE THEORY 

General principles of construction of “resonant” lattices 
detailed in [2] are based on the solution of the equation 
for the dispersion D(s) in the biperiodical structure. 
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Here the gradient G(s) and the orbit curvature ρ(s) related 
to each other through the functions 
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where γvmp 0=  is the particle momentum, should be 
modulated resonantly and in correlation with each other. 
In what follows we will use harmonics of the modulated 
function of gradients 
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is the k-th harmonic of the Fourier series of gradients 
function and  

 

sLs /2 ⋅= πφ      
 

is the longitudinal coordinate normalized to the 
superperiod length Ls, and harmonics in the expansion of 
the curvature function 
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is the n-th harmonic of the Fourier series of the orbit 
curvature function and  

 
π2SLR s ⋅=      

 
is the average curvature radius of the equilibrium orbit in 
the superperiod, S is the total number of superperiods. 
Since mirror symmetry of the superperiod is one of the 
conditions for the construction of the “resonant” lattice, 
expansions of the functions )k(φε   and )(/1 φρ  in the 
Fourier series involve only terms with cosines. 
According to (1), the momentum compaction factor is the 
average value of the function )(/)( φρφD . In the general 

form, the dispersion )(φD  and the orbit curvature 
)(

1

φρ
 

can be represented in terms of the averages D  and R  

and the functions RrD /)(~),(
~ φφ  oscillating about these 

averages:  
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Then the momentum compaction factor can be written as 
the sum 
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In an ordinary regular FODO lattice without gradient and 
orbit curvature modulation the oscillating components are 

equal to zero, 0)(
~ =φD , 0)(~ =φr , and the momentum 

compaction factor is governed by the first term in (5). 
Considering that the average dispersion in classical 
lattices is  

2ν
R

D =     

we find that the minimum value of the momentum 
compaction factor  

2

1

ν
α ==

R

D
    

is limited by the total number of horizontal betatron 
oscillations ν  in the magnetic optical structure of length 
S·Ls. In the “resonant” lattice, the functions of gradients 
and/or orbit curvature can be modulated jointly or 
individually. In [2] general expressions were obtained for 
the momentum compaction factor for one superperiod 
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and for the dispersion function maximum in a superperiod 
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where kS is the modulation frequency of the k-th 
harmonic in the expansion of the gradient and curvature 



functions, f̂  is the function describing beam envelope 
oscillations, which is normalized to its average value. We 
will call the harmonic closest to ν  (with the minimum 
possible difference ν−kS ) and producing the maximum 
effect on the momentum compaction factor the 
fundamental harmonic. This harmonic has kS oscillations 
over the entire lattice in question. In most cases under our 
consideration the frequency of the k-th harmonic 
coincides with the number of superperiods, i.e., k = 1 and 

SkS = . Indeed, if both the quadrupole gradient function 
and the orbit curvature function are modulated with an 
identical frequency (i.e., at k = n in (3) and (4)), the 
second term in (5) may make an appreciable contribution 
to the momentum compaction factor provided that the 
value ν/1 kS−  is small (see (6)).  
In addition, from (6) there follows an obvious condition 
of antiphase modulation of the gradient and curvature 
function, which allows correlated variation of the 
momentum compaction factor with the aid of these 
functions. We call this lattice, based on the resonant and 
correlated perturbation of the magnetic optical channel 
parameters, the “resonant” lattice.  

Thus, the following principles underlie the general 
approach to construction of a “resonant” lattice: 

• the fundamental modulation frequency should be 
identical for the functions of the gradients and the 
orbit curvature and higher than the horizontal  
betatron  frequency ν>kS  with as minimum a 
difference ν−kS  as possible; 

• modulation of the orbit curvature should be in 
antiphase with modulation of the quadrupole 
gradients, 0<kk rg ; 

• amplitudes of each of the fundamental harmonics, 

kg  and kr , should be as high as possible; 

• exact equality of the frequencies kS=ν  and 
2/kS=ν   at which the dispersion and the β-

function increase beyond limits should be eliminated. 
 

A SUPERPERIOD OF THE “RESONANT” 
LATTICE 

     In common case there are two types of lattices used in 
accelerators with inserted straight sections, the so-called 
circular lattices with S identical superperiods and the 
lattice consisting of arcs with Sarc superperiods  per each 
one separated by straight sections. In the former lattices 
the momentum compaction factor completely coincides 
with its value for one superperiod. In the lattices 
consisting of arcs with Sarc superperiods of length Ls and 
separated by straight sections of length Lstr, the 
momentum compaction factor for the entire accelerator 
αtotal and for a superperiod αs are related by the equation 

 

strsarc

sarc
stotal LLS

LS

+⋅
⋅= αα .   (8) 

Thus, knowing the momentum compaction factor for one 
superperiod, one can easily find its value for the entire 
accelerator.  
For the proton synchrotron PS2 the racetrack lattice was 
adopted due to many reasons considered in [1]. On the 
straight sections several injection and extraction systems 
must be implemented [9]. Since the straight sections do 
not affect essentially on the momentum compaction 
value, just as a coefficient in expression (8), we 
concentrate our investigations on the arc structure for the 
most part. So, hereinafter we discuss the arcs structure 
only, assuming they can be easily matched with the 
designed straight sections. For the dynamic aperture 
calculation we take the straight section as regular FODO 
insertions between arcs.  
The arcs are based either on the regular cell-periodical 
structure or on superperiods.   A superperiod is usually 
formed by varying parameters of a regular lattice 
consisting of singlet FODO cells, doublet FDO cells, or 
triplet FDFO cells (F is the focusing quadrupole, D is the 
defocusing quadrupole, and O is the drift space), each 
having its advantages and drawbacks. However, 
considering the chromaticity compensation requirement, 
the FODO lattice is most preferable because the other two 
lack good separation of the horizontal and vertical β-
functions, which results in a decreased efficiency of the 
sextupoles and accordingly in a decreased dynamic 
aperture. In addition, the FODO superperiod with mirror 
symmetry about its centre provides most favourable 
conditions for independent control of the betatron 
frequencies, chromaticity in both planes, and momentum 
compaction factor, which makes a lattice like this superior 
to any other. 
The number of cells in a superperiod Ncell is dictated by 
the required phase advance of radial oscillations. 
Following the theory of resonant lattices, we will try to 
construct a lattice with the horizontal frequency νarc as 
close to the number of superperiods Sarc as possible [2]. In 
this case, the phase advance of horizontal oscillations per 

cell will be about 
cellarc

arc

NS ⋅
νπ2 . At the same time it is 

known that from the point of view of minimization of the 
β-functions for a cell the phase advance of radial 
oscillations should fall within the range 60°–100°. Thus, 
in a lattice with the fundamental harmonic of the 
modulation of the superperiod parameters k = 1 and with 
νarc< Sarc the number of cells turns out to be 3–5 per 
superperiod. 
Since an increase in the number of cells requires greater 
splitting of the superperiod and entails an increase in the 
number of magnetic optical elements, we exclude the 
five-cell option from consideration and confine ourselves 
to analysis of a superperiod comprising 3–4 cells.  
Figures 1and 2 show the behavior of the function βx,y and 
Dx in a regular arc based on plain FODO cells, where 
each drift space accommodates a bending magnet. Taking 
into account the PS2 parameters [1], the magnetic rigidity 



≈ep / 170 m·T, the cells number 22, the maximum field 

in magnet 1.8 T and the maximum gradient in quadrupole 

 
Figure 1: FODO cell 

 
17 T/m the arc total length together with two missing 
magnet suppressors at edges is to be 513.5 m. Obviously, 
strict periodicity of cells does not make it possible to get 
the required value of the momentum compaction factor 
which is fixed by the value of the horizontal betatron 
frequency in this case γtr≈10. 
 

 
Figure 2: Arc based on FODO with dispersion 

suppressors located at edges of arcs 
 

As a remark to make the gamma-transition higher than 50 
the total number of FODO cells has to be increased up to 
110 per arc. Therefore the only possible solution to 
eliminate the gamma-transition crossing is the “resonant” 
lattice.  
Figure 3 shows a superperiod made up of three FODO 
cells with gradient modulation alone and mirror symmetry 
about the center, where two quadrupole families form the 
required fundamental harmonic k = 1. The arc is supposed 
to consist of 8 superperiods with the same total length of 
arc 513.5 m. However, to get the required gamma-
transition γtr=i10 [1] this modulation method requires a 
great change of the field in the quadrupoles. Note that 
strong modulation of the gradients leads to a considerable 
increase in β-functions, in our case βx~100 m, and 
chromaticity of the entire accelerator, which results in a 

reduced dynamic aperture, and therefore this version of 
the resonant lattice is left out of consideration. 

  
Figure 3: Superperiod with gradient modulation 

 
Figure 4 correspond to the lattices where a superperiod is 
made up of three cells and the fundamental harmonic k = 
1 is produced by modulation of the orbit curvature 
through using empty central cells called missing magnets 
(or missing magnet cells). In these curvature-varying 
lattices β-functions became smaller and chromaticity is 
kept lower.  But unfortunately, the orbit curvature 
modulation method does not always provide the required 
value of gamma-transition. In our case under arc length 
restricted by 513.5 m it is about γtr≈ 12, which one is 
absolutely not enough. 

 

 
Figure 4: Superperiod with orbit curvature modulation 

 
Thus, modulation of the orbit curvature and modulation of 
the quadrupole gradients can be used to get the required 
momentum compaction factor. The former method allows 
controlling the momentum compaction factor with the 
minimum increase in the βx function and Dx and, 
compared with gradient modulation lattices, does not 
require strong sextupoles for chromaticity correction. 
However, the gradient modulation method is more 
flexible as it allows the momentum compaction factor of 
the already existing machine to be varied. In addition, it is 
often impossible to employ the factor )1//(1 −arcarckS ν  
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and to increase it by making νarc approach kSarc, which 
results in ineffectiveness of each method used separately. 
For example, in high-intensity accelerators one of the 
requirements is zero dispersion in straight sections. This 
means that the phase advance of radial oscillations in arcs 
should be a multiple of 2π and the condition min{kSarc – 
νarc} = 1 should hold. 
Based on the above reasoning, the “resonant” lattice 
method with simultaneous orbit curvature and quadrupole 
gradient modulation with an identical frequency of the 
fundamental harmonics and an approximately identical 
contribution of both modulations to the final value of the 
momentum compaction factor is most effective. From (6) 
it is easy to derive the following equality for an arbitrary 

fundamental harmonics kg  and kr  giving 2/1 να −≈ : 
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As was already mentioned, modulation of gradients and 
modulation of the orbit curvature should be in antiphase 
and the reasonable location of the missing magnet cell is 
at the centre of the superperiod. This means that the 
amplitude of the fundamental harmonic of the orbit 
curvature modulation should be negative, rn < 0, and 
therefore the amplitude of the gradient modulation will be 
positive. At these conditions the gamma-transition varies 
in a wide region from γtr=ν to γtr=iν with quadrupole 
gradient modulation only. As an example of a lattice with 
both modulations, you can see figure 5. 
 

 
Figure 5: Superperiod of “resonant” lattice with 

simultaneous orbit curvature and quadrupole gradient 
modulation 

 
However under the PS2 arc length restriction 513.5 m the 
central drift has to be shorter, and the zero momentum 
compaction factor can be obtained with additional 
modulation of gradients at a level of approximately 20% 

(see Fig. 6). In result the horizontal βx-function on 10 % 
above in comparison with regular structure.  

 
Figure 6: The α (1), xξ (2), xβ (3) and xD (4)  versus the 

gradient modulation 

Figures 7 and 8 show the results yielded by various 
modifications of the method. In the first case (Fig. 7) the 
central quadrupole is “cut” in two slices and a sextupole 
is inserted between the slices, as was done, for example, 
in the JPARC project [7]. 
 

 
Figure 7: Superperiod with the central quadrupole sliced 

 

 
Figure 8: Superperiod with 10 magnets 

 
On the one hand, positioning of the sextupole at a point 
where the horizontal β-function has a large value 
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increases its efficiency and thus the total number of 
focusing sextupoles can be reduced. On the other hand, 
division of a quadrupole into two halves increases their 
number. To our mind, this design does not give any 
significant advantages and is only a modification of the 
universally accepted resonant lattice. In the second case 
(Fig. 8) the orbit curvature is varied without a decrease in 
the total number of magnets, by varying the central cell 
length alone. This option may be advantageous for a 
magnetic optical lattice with rectangular magnets because 
the magnet sagitta is considerably decreased. 
 

STRUCTURE OF ARCS 
    Now let us consider the magnetic optical structure of 
the entire accelerator, i.e., lattices of its arcs and straight 
sections. The straight sections will be added as the FODO 
insertions between arcs without details, since their 
structure do not affect on the momentum compaction 
factor and is specified and designed in [9]. Considering 
that physics equipment is to be installed in straight 
sections, let us formulate additional requirements to the 
resonant lattices: 

• independent tuning of arcs and straight sections; 
• controllable variation of the momentum compaction 

factor within the range α ~ 1/ν2 to –1/ν2; 
• ability to correct chromaticity of the entire 

accelerator by sextupoles located in the arcs; 
• a sufficiently large dynamic aperture with 

allowance for all nonlinearities; 
• zero dispersion in straight sections. 

The first condition determines the macrostructure of the 
accelerator, namely, separation in functions between arcs 
and straight sections. Arcs fulfill bending functions and 
functions governing the main magnetic optical 
characteristics of the lattice, such as the momentum 
compaction factor, suppression of chromaticity, zero 
dispersion in straight sections, and correction of higher-
order nonlinearities. Straight sections fulfill functions 
associated with accommodation of experimental 
equipment and final tuning of betatron oscillation 
frequencies of the entire accelerator. In addition, the 
optics of the arcs should be independent of the optics of 
the straight sections to allow more convenient work and 
minimum preparation for experiments. The number of 
arcs and straight sections is dictated by many parameters, 
first of all by the required architecture of the ring and the 
projected experiments, and for the PS2 it is two [1,9]. 
For the dispersion in straight sections to be zero, the arc 
consisting of Sarc superperiods should have a phase 
advance of radial oscillations that is a multiple of 2π, i.e., 
νarc should be an integer. This means that the phase 
advance in one superperiod should be 2πνarc/Sarc. On the 
other hand, for the momentum compaction factor to be 
controlled, the betatron frequency of horizontal 
oscillations should be smaller than the number of 
superperiods multiplied by the number of the fundamental 

harmonic. From this point of view it is reasonable to take 
the minimum possible difference 

1−=− arcarc kSν .    
Thus, there exist many ratios between Sarc and νarc:  
 

(4:3), (6:5),  (8:7), (10:9), …. 
 

Besides, there is another possibility. The arc may be 
divided into an equal integral number of superperiods 
within which the above ratios hold, for example, the ratio 
can be  

Sarc : νarc =8 : 6=2 x (4:3) 
 
Actually, the arc is divided into two arcs in the ratio 4 : 3 
without a straight section, and the zero dispersion 
condition is met not only at the edges but also in the 
middle of this double arc. As is seen, in all ratios the 
number of superperiods Sarc is taken to be even while the 
betatron oscillation frequency takes on integral odd 
values. In this case, the phase advance of the radial 
oscillations between the cells located in different 
superperiods and separated by Sarc/2 superperiods is 
obviously  

n
S

S
arcarc

arc

arc ππνπνπ 2
2

2
2

2 +=⋅=⋅⋅ ,  

which corresponds to the condition of first-approximation 
compensation for the nonlinear effects of sextupoles 
located in these cells. This remarkable property also 
applies to higher multipoles in bending magnets and 
quadrupoles because each of them has a partner in the 
other quarter of the arc at a distance of odd integral π of 
radial oscillations (see Fig. 9).  

First quarter Second quarter

1.5 x (2  )π

1.5 x (2  )π

 
Figure 9: Half of arc with (Sarc:νarc)=8:6 

  
Thus, choosing Sarc, k, and νarc, we determine the lattice of 
the arc and the number of arcs. On the one hand, we are 
limited by strict rules for the choice of these parameters, 
on the other, the choice is quite wide and we may speak 
about a certain class of accelerators with such arcs. 
By way of example, let us consider two versions of the 
lattice for the PS2 accelerator with an identical number of 
arcs and identical transition energy γtr =i10. In the first 
version the arc has the number of superperiods Sarc = 8 



   
   a)        b) 

   
   c)        d) 

Figure 10: Dependence of the β-functions (a, c) in one superperiod and the dispersion (b, d) in the 8-superperiods arc 
with the horizontal tune νarc=6 (a, b) and νarc=7 (c, d) and 8 magnets per one arc. 

 
 

   
   a)        b) 

   
c) d) 

 
Figure 11: Dependence of the β-functions (a, c) in one superperiod and the dispersion (b, d) in the 8-superperiods arc 

with the horizontal tune νarc=6 (a, b) and νarc=7 (c, d) and 10 magnets per one arc.  
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Table 1: TWISS parameters of regular FODO lattice and “resonant” lattices with 8 superperiods per arc 
 

Options(arc length=513.5 m) γtr βxmax βymax Dxmax 

Regular lattice with 22 FODO cells (84 magnets per arc) ~10 39 39 3.5 

Resonant lattice with νx=6; νy=6; longer central quadrupole, 
8 magnets per superperiod 

~i8÷10 60 61 6.2 

Resonant lattice with νx=6; νy=6; two central quadrupoles; 
8 magnets per superperiod 

~i8÷10  62 69 6.0 

Resonant lattice with νx=7; νy=6; longer central quadrupole; 
8 magnets per superperiod 

~i8÷10 48 62 9.4 

Resonant lattice with νx=7; νy=6; two central quadrupoles; 
8 magnets per superperiod 

~i8÷10 49 71 9.0 

Resonant lattice with νx=6; νy=6; longer central quadrupole; 
10 magnets per superperiod 

~i8÷10 71 41 7.9 

Resonant lattice with νx=7; νy=6; longer central quadrupole; 
10 magnets per superperiod 

~i8÷10 47 40 14.5 

 
 

Table 2: Magnito-optic elements of regular FODO lattice and “resonant” lattices with 8 superperiods on arc 
 

One arc: length=513.5 m Nmag Lmag Nquad Lquad Nsext Lsext 

Regular with 22 FODO cells (84 magnets per arc) 84 3.7 44 1.5 44 0.5 

Resonant lattice with νx=6; νy=6; longer central quadrupole, 
8 magnets per superperiod 

64 4.9 48 1.5;2.3 32 0.5 

Resonant lattice with νx=6; νy=6; two central quadrupoles; 
8 magnets per superperiod 

64 4.9 56 1.5 32 0.5 

Resonant lattice with νx=7; νy=6; longer central quadrupole; 
8 magnets per superperiod 

64 4.9 48 1.5;2.3 32 0.5 

Resonant lattice with νx=7; νy=6; two central quadrupoles; 
8 magnets per superperiod 

64 4.9 56 1.5 32 0.5 

Resonant lattice with νx=6; νy=6; longer central quadrupole; 
10 magnets per superperiod 

80 3.9 48 1.5;2.3 32 0.5 

Resonant lattice with νx=7; νy=6; longer central quadrupole; 
10 magnets per superperiod 

80 3.9 48 1.5;2.3 32 0.5 

 
and the frequency of horizontal oscillation in the arc 
νarc = 6, in the second version Sarc = 8 and νarc = 7 (see 
Fig. 10). Besides, both versions have two options with 
8 and 10 magnets per one superperiod (see Fig. 11). In 
tables 1 and 2 parameters of the considered structures 
are placed. In spite of all structures have identical 
properties, it is reasonable to take finally the structure 
with the minimal values of βx,y and Dx as optimum 
structure.  
For the dispersion in the straight sections to be zero, 
the phase advance of radial oscillations should be a 
multiple of 2π and the dispersion should begin with the 
zero value at the entrance of the arc. Therefore, the 
dispersion oscillates with a double frequency: the 
superperiod frequency and the arc periodicity. This 
leads to an additional increase in the maximum 
dispersion in the arc. Obviously the longer arc, the 
bigger amplitude of second periodicity. For example, in 
the arc with Sarc: νarc=8:6 the dispersion increases from  
 

 
6 m for superperiod to 8 m for arc, which is a ~30% 
increase, and in the arc with Sarc: νarc=8:7   the 
maximum dispersion increases from 6.5 m to 9.5 m 
correspondingly, which is a ~45% increase. In the latter 
case the arc period is longer and thus the arc periodicity  
causes a larger increase in dispersion. Note that in both 
cases the arc periodicity of the dispersion function does  
not lead to variation in the momentum compaction 
factor because integral (1) remains unchanged. The 
behavior of the βx,y-functions also remains unchanged 
because the initial zero dispersion values do not affect 
them. Since arcs and straight sections are separated in 
functions, the betatron oscillation frequencies νx,y in the 
arcs do not change in any mode of operation and 
therefore quadrupoles specially inserted in the straight 
sections and providing the desired fraction value of the 
betatron frequency of the entire machine are 
responsible for the control of the working point 
position. However, in the case of retuning of the 
momentum compaction factor, the arc edge values of 



the βx,y-functions change. Therefore, special matching 
sections are inserted in the straight sections, which, 
with their four quadrupoles, allow matching of the arcs 
and straight sections to be retained. As a result, arcs are 
fully independent of straight sections and correction of 
the momentum compaction factor does not affect the 
values of the βx,y-functions set for the straight section’s 
facilities. If there are no special requirements to the 
behavior of the βx,y-functions in the straight sections, 
the straight section lattice is usually mirror symmetrical 
about its middle, and therefore all quadrupoles of the 
straight sections can be directly used for matching arcs 
and straight sections. This considerably simplifies 
tuning of the entire accelerator due to minimization of 
the number of quadrupole families in the straight 
sections.  

CONTROL OF MOMENTUM 
COMPACTION FACTOR AND ARCS 

TUNE 
As we know in the “resonant” lattice in order to 

achieve the required momentum compaction factor, we 
modulate the quadrupole gradients on arcs correlated 
with a fixed orbit curvature modulation. In practice, we 
should know exactly which element controls the 
momentum compaction factor and arc tunes. Moreover, 
the element responsible for one function should be 
minimally correlated with the element responsible for 
another function. Due to the special features of the 
“resonant” lattice, this principle can be realized. From 
formulas (6) and (7), we can derive that at the mirror 
superperiod symmetry, the dispersion and the β  

functions are modulated by factors: 
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(10) 
On condition that ratios arcarckS ν> , 0>kg  and 

0<kr  are fulfilled for the fundamental harmonic k=1, 
the maximum dispersion will be at the superperiod 
center 0=φ , and the maximum horizontal β -function 

beginning at πφ −=   and ending at πφ =  on the 

superperiod.  
Figure 12 shows the functional control of all 
quadrupoles. In the “resonant” lattice, the central 
focusing quadrupole QF2 is placed in the maximum 
dispersion giving it the main role in controlling the 
fundamental harmonic. Another focusing quadrupole 
QF1 is placed in the maximum xβ -function, which 
makes it effective at controlling the horizontal tune. 

Due to FODO features, the yx,β - functions are very 

well separated and two defocusing quadrupoles 
independently affect the vertical tune. To prove 
independent controllability of the momentum  

 
 

 
Figure 12: Functional control scheme of elements in a 

half superperiod 

 
compaction factor on both horizontal and vertical arc 
tunes, we performed a numerical simulation of such 
control in the lattice with originally installed maximum 
possible negative )7( 02.0 itr ≈−= γα . 
 

 
Figure 13: Momentum compaction factor vs 

quadrupoles gradient 

 
Figure 13 shows how the gradient of quadrupoles QF1, 
QF2, QD1, QD2 and QD (QD1=QD2) changes the 
momentum compaction factor in the vicinity of 
working meaning 02.0−=α . In the case where 
QD1=QD2, there is one family of defocusing 
quadrupoles, and both quadrupoles are feed by one 
power source.  

From these results we can see that the derivatives of 
momentum compaction factor with a gradient in the 
quadrupoles are in the relation: 
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Thus, the momentum compaction factor can be very 
flexibly controlled by the focusing quadrupole QF2 
alone. Simultaneously, the QF1 gradient is expected to 
impact effectively on horizontal tune. Figures 14 and 
15 show the numerical simulation of how each family 
of quadrupoles changes the horizontal and vertical 
tunes for one half-arc in the vicinity of working points 

0.32x ×=arcν  and 0.32 y ×=arcν . 

 
Figure 14: Horizontal tune vs quadrupoles gradient 
 

 
Figure 15 : Vertical tune vs quadrupoles gradient 
 

From these results, we can see that the derivatives of 
horizontal and vertical tunes with a gradient in the 
quadrupoles are in the relation: 
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After readjusting the momentum compaction factor 
using the QF2 quadrupole family, the required tunes 
value yxarc , ν  are returned by two-three iteration steps 

using another quadrupole family QF1 and QD, which 
in turn weakly influence the momentum compaction 
factor. 

Thus, we have separated internal arc functions: 
• momentum compaction factor is controlled by 

central focusing quadrupole QF2, 

• horizontal tune is controlled by focusing 
quadrupole QF1,  

• vertical tune is controlled by defocusing 
quadrupoles QD1 and QD2 or QD. 

Since derivatives 
1

 

QD

yarc

G∂
∂ν

and 
2´

 

QD

yarc

G∂
∂ν

have 

approximately equal values, it is reasonable to use one 
family of defocusing quadrupoles, QD, only. This 
allows us to control the vertical tune more easily and 
more effectively, and does not influence the 
controllability of other parameters.  
 

CHROMATICITY CORRECTION 
    The chromaticity is created by the quadrupole and 
defined as the variation of the betatron tune yx,ν  with 

the relative momentum deviation  
δ

ν
d

d
Q yx

yx
,

, =′ , where 

p

pΔ=δ . The special optic elements, the sextupoles, 

are installed into the lattice to correct the chromaticity. 
Their integrated contribution over the whole ring 
circumference C on the chromaticity is: 
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Obviously, to strengthen the sextupole efficiency, they 
have to be allocated in maximum dispersion and with 
different xβ  and yβ  values to split the chromaticity 

correction in the horizontal and vertical planes. With 
regard to the last point, the “resonant” lattice based on 
the singlet FODO structure is preferred above other 
lattices based on doublet or triplet structures. In the 
“resonant” lattices, the empty space of magnet-free 
cells is used for the sextupole location (see Fig. 12). In 
some projects, for instance in JPARC, the focusing 
sextupole is inserted into the splintered central focusing 
quadrupole (see Fig. 7). Two families of sextupoles, 
two focusing and two defocusing sextupoles, are used. 
In order to prove independent controllability of 
chromaticity on both focusing and defocusing 
sextupoles, we performed a numerical simulation of 
such control in the lattice with initially installed zero 
chromaticity 0, =yxξ . Figures 16 and 17 show the 

numerical simulation results and how the focusing and 
defocusing sextupoles SF and SD change the horizontal 
and vertical chromaticity correspondingly. From these 
results, we can see that the derivatives of horizontal 
and vertical chromaticities with gradient in the 
sextupoles can be related as follows: 
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Figure 16: Horizontal chromaticity vs focusing and 

defocusing  sextupole gradient 

 
Figure 17: Vertical chromaticity vs defocusing and 

focusing sextupole gradient 

 
Thus, two sextupole families can control both 
horizontal and vertical chromaticities independently 
and successfully. 
 

COMPENSATION OF SEXTUPOLE 
NONLINEARITY 

    In the common case, the lattice has nonlinear optics. 
Usually, the strongest contribution to the nonlinearity is 
made by the chromatic sextupoles. In order to 
investigate the nonlinear optics, we use the 
Hamiltonian formalism. In the variable “action-angle”, 
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the Hamiltonian is presented as: 
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where the coefficients jk
lmE  depend on the value and 

distribution of the nonlinear elements, and they have 

the periodicity π2  with the new “time” coordinate 

s
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So, the nonlinear part of Hamiltonian is: 
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with the Fourier coefficients: 
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In case two conditions are fulfilled, namely the 
harmonic value 0≠jklmph   for some of the nonlinear 

elements kjM + ,  and pkk yyxx =+ νν , where lkx =  

and mk y = , we have nonlinear resonance, and on the 

contrary, when we wish to exclude the resonance 
influence, we should minimize the harmonic amplitude 

jklmph . The only condition, which cancels all 

coefficients jk
lmE  is the zero value of  0=jklmph  for all  

j,k,l,m. In particular, where the chromaticity correction 
on arcs with Sarc superperiods is performed, the 
sextupoles must be placed with the phase advances 

yx μμ ,  per superperiod, when the harmonic is 

0=jklmph  for all above-mentioned combinations of 

j,l,k,m in (19), and the total multipole of the third order 
is canceled: 
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where  yxS ,  are the sextupoles gradient. In the 

“resonant” lattice, the superperiod number arcS  is even 

and the arc tune arcν  is odd, then the phase advance 

between similar sextupoles of thn −  and 

th
S
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 (see Fig. 9). In the 

first order of the perturbation theory, the sextupole 
excites four resonances { } { }2,1 ;0,3 ;0,1, ±=ml . Taking 

into account that sextupole  takes the odd integer l , we 
have the conditions required to compensate for each 
sextupole's nonlinear action with another one. 

The same can be inferred for the sextupole components 
in the magnets, since each magnet has its twin located 



on lxπν  phase advance, where the nonlinear kick is 
compensated. 
In case of essential chromaticity contribution from the 
straight section a method of the second order non-
linearity compensation has to be foreseen as well.  
Solving the nonlinear equation and deriving the 
Hamiltonian (16) in the first order of the perturbation 
theory, the value jklmph  is taken as the small parameter, 

and all non-resonant terms are omitted. Thus, in the 
first order of the perturbation theory, the sextupoles can 
be canceled. However, in the second order, the 
nonlinear perturbation already contains the higher order 
of jklmph , which gives nonlinear tune shifts, such as 

octupoles [10]. In principle, the sextupole nonlinear 
tune cannot be controlled after the sextupole location 
has been fixed. Therefore, the sign of total chromaticity 
is controlled by the octupoles, which are located in the 
multi-pole correctors. Thus, after chromaticity 
correction, the nonlinear tune shift is measured and 
then using the correcting octupole, we adjust the 
required sign and value of the nonlinear tune shift, as 
described in [10].  

 

Figure 18: PS2 dynamic aperture after chromaticity 
correction at Δp/p=1%  

After all corrections have been made, we have done the 
tracking for the maximum momentum spread beam 

%1/ =Δ pp . Figure 18 shows the results of dynamic 
aperture calculations after chromaticity correction. For 
horizontal plane it is ~600 mm·mrad and for vertical 
plane it has approximately the same meaning ~500 
mm·mrad.  

CONCLUSION 
    The PS2 imaginary gamma-transition lattice was 
developed with features: 

• ability to achieve the negative momentum 
compaction factor using the resonantly correlated 
curvature and gradient modulations; 

• gamma transition variation in a wide region from 
γtr=νx to γtr=iνx with quadrupole strength variation 
only; 

• integer odd 2π phase advance per arc with even 
number of superperiod and dispersion-free straight 
section; 

• independent optics parameters of arcs and straight 
sections; 

• two families of focusing and one of defocusing 
quadrupoles; 

• separated adjustment of gamma transition, 
horizontal and vertical tunes; 

• convenient chromaticity correction method using 
sextupoles; 

• first-order self-compensating scheme of 
multipoles and as consequence low sensitivity to 
multipole errors and a large dynamic aperture 
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