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Abstract

At present the new proton synchrotron PS2 with the
energy range 4-50 GeV is discussed to upgrade LHC
injector’s complex [1]. Two lattices with and without the
transition energy crossing are considered. In second
option the momentum compaction factor must be kept
low enough or negative. On the basis of the theory of
“resonant” lattices for synchrotrons with complex
transition energy developed in [2], the lattice with
imaginary gamma-transition v, for construction of PS2
lattice is proposed. Additionally the lattice should meet a
number of important requirements, e.g., dispersion-free
dtraight sections, a flexible scheme of chromaticity
correction, alarge enough dynamic aperture, etceteras.

INTRODUCTION

Since the longitudinal oscillation frequency is
proportional to a root square of the dip factor

n=1y:-1y*, the longitudina gability a the
trangition y =y, is lost. Therefore the acceleration
through transition is considered a major problem, and the
momentum compaction factor «=1/%; is one of the

most important characteristics of any synchrotron. With
regard to this problem, many methods have been
developed for crossing the transition energy with
minimum particle loss. However, in a high-intensty
proton accelerator, the trandtion-energy crossing must be
completdy avoided because of the need for extremely

low losses at the 10°-10"* level. Moreover, the dip
factor should be as high as possible in order to increase
the collective ingtahility threshold. Besides the absolute
value of dip factor can be used as additional factor for
matching between two accelerators or/fand control of
beam sizes during acceleration.

To eéliminate the transition energy crossing in anew
designed PS2 synchrotron the gamma-transition must be
moved away from acceleration range y=5+50. For this
purpose we use the theory of “resonant” lattices. With
specially corrdated modulation of quadrupoles gradient
and orbit curvature and a particular choice of betatron
oscillation frequencies, the theory of “resonant” lattices
developed in [2] makes it possible to get interrelated
dispersion variations D(s) and 1/p(s) aong the
equilibrium orbit and a negative momentum compaction
factor
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A lattice like this should diminate transition energy
crossing by accelerated particles since the transition

energy takes imaginary values v, =—i/\/ﬂ. In addition,

the PS2 lattice must meet a number of physica and
technical requirements, such as independent tuning of the
momentum compaction factor and betatron frequencies of
arcs, zero dispersion in draight sections, effective
chromaticity correction by the smallest possible number
of quadrupole families, a large dynamic aperture. The
latter implies first of all mutual compensation of the
nonlinear effect of chromatic sextupoles on the motion of
particles in the accelerator in the firg order of the
perturbation theory.

In this article we propose the imaginary vy, lattice for
PS2 complying with the above conditions and discuss
which lattice is optimal in view of the possible
technological features of a particle accelerator.

The “resonant” lattice was first proposed for the
Moscow Kaon Factory [3]. This lattice was then adapted
for the TRIUMF KAON Factory (Canada) [4]. Later it
was considered as the best candidae for the
Superconducting Super Collider (SSC) Low Energy
Booster (USA) [5], then was adopted for the main
accelerator of the Neutrino Factory at CERN
(Switzerland) [6], and ultimately was implemented in the
JPARC (Japan Protons Accelerator Research Center),
accelerator complex [2,7]. In the High Energy Storage
Ring (HESR) lattice of the FAIR project, the sameideais
also accepted [8].

The digtinguishing features of thislattice are:

e ability to achieve the negative momentum
compaction factor using the resonantly correlated
curvature and gradient modulations;

e gamma transition variation in a wide region from
7, =V, to y, =iv, (v is the horizontal tune) with
guadrupol e strength variation only;

o dispersion-free straight section;

¢ independent optics parameters of arcs and straight
sections;

o two families of focusing and one of defocusing
guadrupoles;

o separated adjustment of gamma transition, horizontal
and vertical tunes;

e convenient chromaticity correction method using
sextupoles;

o first-order self-compensating scheme of multipoles
and a large dynamic aperture;

o |ow sensitivity to multipole errors.

Hereinafter we will denote the horizonta tune v, as v,

since the vertical tune does not affect on the momentum
compaction factor.



MAIN PROPOSITIONSOF THE
“RESONANT” LATTICE THEORY
General principles of construction of “resonant” lattices

detailed in [2] are based on the solution of the equation
for the dispersion D(s) in the biperiodical structure.
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Here the gradient G(s) and the orbit curvature p(s) related
to each other through the functions

K(9) = , gk(s):%'
where p=mgyv is the particle momentum, should be

modul ated resonantly and in correlation with each other.
In what follows we will use harmonics of the modulated
function of gradients

6 k(@)= g, cos kg &)
k=0

eG(s)
P

where
O, =E-1IAGwsk¢d¢
pz-

is the k-th harmonic of the Fourier series of gradients
function and

¢=2r-slL
is the longitudina coordinate normalized to the

superperiod length Ls, and harmonics in the expansion of
the curvature function

1 1 =
m—ﬁ[l+nzlzrncosn¢] (4)
where
_R J‘ Cosn¢)
p(9)

is the n-th harmonic of the Fourier series of the orbit
curvature function and

R=L, S/27

is the average curvature radius of the equilibrium orbit in
the superperiod, Sisthetotal number of superperiods.

Since mirror symmetry of the superperiod is one of the
conditions for the construction of the “resonant” lattice,
expansions of the functions k(¢ and 1/p(¢) in the

Fourier seriesinvolve only termswith cosines.
According to (1), the momentum compaction factor isthe
average value of the function D(¢)/ p(¢) . In the general

form, the dispersion D(¢) and the orbit curvature %
plo

can be represented in terms of the averages D and R

and the functions I5(¢),F(¢)/ﬁ oscillating about these
averages.

D(¢)=D+DB(9) and —=%(1+‘r‘(¢».

p(9)

Then the momentum compaction factor can be written as
the sum
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In an ordinary regular FODO lattice without gradient and
orhit curvature modulation the oscillating components are

equal to zero, 5(¢)) =0, 1 (¢)=0, and the momentum

compaction factor is governed by the first term in (5).
Considering that the average dispersion in classical
latticesis

D=

S| !

we find that the minimum value of the momentum
compaction factor

is limited by the total number of horizontal betatron
oscillations v in the magnetic optical structure of length
SLs In the “resonant” lattice, the functions of gradients
and/or orbit curvature can be modulated jointly or
individually. In [2] generd expressions were obtained for
the momentum compaction factor for one superperiod
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and for the dispersion function maximum in a superperiod
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where kS is the modulation frequency of the k-th
harmonic in the expansion of the gradient and curvature



functions, f is the function describing beam envelope

oscillations, which is normalized to its average value. We
will call the harmonic closest to v (with the minimum
possible difference kS—v) and producing the maximum
effect on the momentum compaction factor the
fundamental harmonic. This harmonic has kS oscillations
over the entire lattice in question. In most cases under our
consideration the frequency of the k-th harmonic
coincides with the number of superperiods, i.e., k =1 and
kS=S. Indeed, if both the quadrupole gradient function
and the orbit curvature function are modulated with an
identical frequency (i.e., at k = n in (3) and (4)), the
second term in (5) may make an appreciable contribution
to the momentum compaction factor provided that the
value 1-kS/v issmall (see (6)).

In addition, from (6) there follows an obvious condition
of antiphase modulation of the gradient and curvature
function, which alows correlated variation of the
momentum compaction factor with the aid of these
functions. We call this lattice, based on the resonant and
correlated perturbation of the magnetic optical channel
parameters, the “resonant” lattice.

Thus, the following principles underlie the general

approach to construction of a“resonant” lattice:

o the fundamental modulation frequency should be
identical for the functions of the gradients and the
orbit curvature and higher than the horizontal
betatron frequency kS>v with as minimum a
difference kS—v aspossible;

e modulation of the orbit curvature should be in
antiphase with modulation of the quadrupole
gradients, g,r, <0;

e amplitudes of each of the fundamental harmonics,
g, and r,, should be as high as possible;

e exact equality of the frequencies v=kS and
v=kS/2 a which the dispersion and the -
function increase beyond limits should be eliminated.

A SUPERPERIOD OF THE “RESONANT”
LATTICE

In common case there are two types of lattices used in
accelerators with inserted straight sections, the so-called
circular lattices with S identical superperiods and the
lattice consisting of arcs with S, superperiods per each
one separated by straight sections. In the former lattices
the momentum compaction factor completely coincides
with its value for one superperiod. In the lattices
consisting of arcs with S, superperiods of length Ls and
separated by straight sections of length Ly, the
momentum compaction factor for the entire accelerator
ayotg aNd for a superperiod os are related by the equation

a, Sarc ) Ls ) (8)
Sarc ’ Ls + Lstr

atotal =

Thus, knowing the momentum compaction factor for one
superperiod, one can eadly find its value for the entire
accelerator.

For the proton synchrotron PS2 the racetrack lattice was
adopted due to many reasons considered in [1]. On the
straight sections several injection and extraction systems
must be implemented [9]. Since the straight sections do
not affect essentialy on the momentum compaction
value, just as a coefficient in expression (8), we
concentrate our investigations on the arc structure for the
most part. So, hereinafter we discuss the arcs structure
only, assuming they can be easily matched with the
designed straight sections. For the dynamic aperture
calculation we take the straight section as regular FODO
insertions between arcs.

The arcs are based either on the regular cell-periodical
structure or on superperiods. A superperiod is usually
formed by varying parameters of a regular lattice
consisting of singlet FODO cells, doublet FDO célls, or
triplet FDFO cdlls (F is the focusing quadrupole, D isthe
defocusing quadrupole, and O is the drift space), each
having its advantages and drawbacks. However,
considering the chromaticity compensation requirement,
the FODO lattice is most preferable because the other two
lack good separation of the horizontal and vertica (-
functions, which results in a decreased efficiency of the
sextupoles and accordingly in a decreased dynamic
aperture. In addition, the FODO superperiod with mirror
symmetry about its centre provides most favourable
conditions for independent control of the betatron
frequencies, chromaticity in both planes, and momentum
compaction factor, which makes a lattice like this superior
to any other.

The number of cells in a superperiod Ngg is dictated by
the required phase advance of radia oscillations.
Following the theory of resonant lattices, we will try to
congtruct a lattice with the horizontal frequency va. as
close to the number of superperiods S, aspossible[2]. In
this case, the phase advance of horizontal oscillations per

cell will be about 27— At the same time it is
arc cell

known that from the point of view of minimization of the
B-functions for a cel the phase advance of radia
oscillations should fall within the range 60°-100°. Thus,
in a lattice with the fundamental harmonic of the
modulation of the superperiod parameters k = 1 and with
Vac< Syc the number of cells turns out to be 3-5 per
superperiod.

Since an increase in the number of cells requires greater
splitting of the superperiod and entails an increase in the
number of magnetic optical dements, we exclude the
five-cel option from consideration and confine ourselves
to analysis of a superperiod comprisng 34 cells.

Figures 1and 2 show the behavior of the function By, and
Dy in a regular arc based on plain FODO cdls, where
each drift space accommodates a bending magnet. Taking
into account the PS2 parameters [1], the magnetic rigidity



p/e=170 mT, the cells number 22, the maximum field
in magnet 1.8 T and the maximum gradient in quadrupole

| S |

PS2 regular FODO
Win32 version 8.51/15 27/09/07 16.49.30

40.0 ; —— 2.6

ws\ P B /\ [ 24
330 4 / '
295 ] r22
26.0 | [ 20
225 |
190 ] 18
155 | 16
120 |

8.5 | B

5.0 T I T T : — T 12
0.0 5.0 10.0 15.0 20.0 25.0

B (m)
D (m)

8¢/ poc = 0.
Table name = TWISS

Figure 1. FODO cdll

17 T/m the arc tota length together with two missing
magnet suppressors at edges is to be 513.5 m. Obvioudly,
strict periodicity of cells does not make it possible to get
the required value of the momentum compaction factor
which is fixed by the value of the horizontal betatron
frequency in this case y,=10.
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Figure 2: Arc based on FODO with dispersion
suppressors located at edges of arcs

As aremark to make the gamma-transition higher than 50
the total number of FODO cells has to be increased up to
110 per arc. Therefore the only possible solution to
eliminate the gammartransition crossing is the “resonant”
lattice.

Figure 3 shows a superperiod made up of three FODO
cells with gradient modulation alone and mirror symmetry
about the center, where two quadrupole families form the
required fundamental harmonic k = 1. The arc is supposed
to consist of 8 superperiods with the same total length of
arc 5135 m. However, to get the required gamma
transition y,=i10 [1] this modulation method requires a
great change of the fidd in the quadrupoles. Note that
strong modulation of the gradients leads to a considerable
increase in p-functions, in our case A~100 m, and
chromaticity of the entire accelerator, which resultsin a

reduced dynamic aperture, and therefore this version of
the resonant lattice isleft out of consideration.
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Figure 3: Superperiod with gradient modulation

Figure 4 correspond to the lattices where a superperiod is
made up of three cells and the fundamental harmonic k =
1 is produced by modulation of the orbit curvature
through using empty central cells called missing magnets
(or missing magnet cdls). In these curvature-varying
lattices p-functions became smaller and chromaticity is
kept lower. But unfortunately, the orbit curvature
modul ation method does not always provide the required
value of gamma-trangtion. In our case under arc length
restricted by 513.5 m it is about yy= 12, which one is
absolutely not enough.
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Figure 4. Superperiod with orbit curvature modulation

Thus, modulation of the orbit curvature and modulation of
the quadrupole gradients can be used to get the required
momentum compaction factor. The former method alows
contralling the momentum compaction factor with the
minimum increase in the A, function and Dy and,
compared with gradient modulation lattices, does not
require strong sextupoles for chromaticity correction.
However, the gradient modulation method is more
flexible as it allows the momentum compaction factor of
the already existing machineto be varied. In addition, it is
often impossible to employ the factor 1/(kS,./v,.—1)



and to increase it by making vac approach kS, which
results in ineffectiveness of each method used separately.
For example, in high-intensity accelerators one of the
requirements is zero dispersion in straight sections. This
means that the phase advance of radial oscillationsin arcs
should be a multiple of 2z and the condition min{ kS, —
vact = 1 should hold.

Based on the above reasoning, the “resonant” lattice
method with simultaneous orbit curvature and quadrupole
gradient modulation with an identica frequency of the
fundamental harmonics and an approximately identical
contribution of both modulations to the final value of the
momentum compaction factor is most effective. From (6)
it is easy to derive the following equality for an arbitrary

fundamental harmonics g, and r, giving & =-1/v?:

—\2
R O
|4 1- (1_ ksarc / Varc)2
and

= i_23/2(ksarc / Vare _1)}/2
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As was already mentioned, modulation of gradients and
modulation of the orbit curvature should be in antiphase
and the reasonable location of the missing magnet cell is
at the centre of the superperiod. This means that the
amplitude of the fundamental harmonic of the orbit
curvature modulation should be negative, r, < 0, and
therefore the amplitude of the gradient modulation will be
positive. At these conditions the gamma-transition varies
in a wide region from y,=v to y,=iv with quadrupole
gradient modulation only. As an example of a lattice with
both modulations, you can see figure 5.
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Figures 7 and 8 show the results yielded by various
maodifications of the method. In the first case (Fig. 7) the
central quadrupole is “cut” in two dlices and a sextupole
is inserted between the dices, as was done, for example,
in the JPARC project [7].
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Figure 7: Superperiod with the central quadrupole diced
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Figure 5: Superperiod of “resonant” lattice with
simultaneous orbit curvature and quadrupol e gradient
modul ation

However under the PS2 arc length restriction 513.5 m the
central drift has to be shorter, and the zero momentum
compaction factor can be obtained with additional
modulation of gradients at a level of approximately 20%
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Figure 8: Superperiod with 10 magnets

On the one hand, positioning of the sextupole at a point
where the horizontal B-function has a large value



increases its efficiency and thus the tota number of
focusing sextupoles can be reduced. On the other hand,
division of a quadrupole into two halves increases their
number. To our mind, this design does not give any
significant advantages and is only a modification of the
universally accepted resonant lattice. In the second case
(Fig. 8) the orhit curvatureis varied without a decrease in
the total number of magnets, by varying the central cell
length aone. This option may be advantageous for a
magnetic optical lattice with rectangular magnets because
the magnet sagittais considerably decreased.

STRUCTURE OF ARCS

Now let us consider the magnetic optical structure of
the entire accelerator, i.e., lattices of its arcs and straight
sections. The straight sections will be added as the FODO
insertions between arcs without details, since their
structure do not affect on the momentum compaction
factor and is specified and designed in [9]. Considering
that physics equipment is to be ingadled in straight
sections, let us formulate additiona requirements to the
resonant | attices:

¢ independent tuning of arcs and straight sections;

o controllable variation of the momentum compaction

factor within the range o ~ 1V to -1,

o ability to correct chromaticity of the entire

accelerator by sextupoles located in the arcs;

o asufficiently large dynamic aperture with

allowance for al nonlinearities;

e zerodispersion in sraight sections.

The first condition determines the macrostructure of the
accelerator, namely, separation in functions between arcs
and straight sections. Arcs fulfill bending functions and
functions governing the man magneic optical
characteristics of the lattice, such as the momentum
compaction factor, suppression of chromaticity, zero
dispersion in straight sections, and correction of higher-
order nonlinearities. Straight sections fulfill functions
associated  with accommodation of  experimental
equipment and fina tuning of betatron oscillation
frequencies of the entire accelerator. In addition, the
optics of the arcs should be independent of the optics of
the straight sections to allow more convenient work and
minimum preparation for experiments. The number of
arcs and straight sections is dictated by many parameters,
first of all by the required architecture of the ring and the
projected experiments, and for the PS2 it istwo [1,9].

For the dispersion in straight sections to be zero, the arc
consisting of Sy. superperiods should have a phase
advance of radia oscillations that is a multiple of 2z, i.e.,
vac Should be an integer. This means that the phase
advance in one superperiod should be 2mv4d/Syc. On the
other hand, for the momentum compaction factor to be
controlled, the betatron frequency of horizontal
oscillations should be smaller than the number of
superperiods multiplied by the number of the fundamental

harmonic. From this point of view it is reasonable to take
the minimum possible difference

v kS

arc T Krc = -1.

Thus, there exist many ratios between S, and va.:
(4:3), (6:5), (87), (10:9), ....

Besides, there is another possibility. The arc may be
divided into an equal integral number of superperiods
within which the above ratios hold, for example, theratio
can be

Sic: Vac =8: 6=2 X (4:3)

Actually, the arc is divided into two arcsin theratio4 : 3
without a straight section, and the zero dispersion
condition is met not only at the edges but also in the
middle of this double arc. As is seen, in dl ratios the
number of superperiods S, is taken to be even while the
betatron oscillation frequency takes on integrd odd
values. In this case, the phase advance of the radial
oscillations between the cells located in different
superperiods and separated by S,J/2 superperiods is
obvioudy
Zﬁ-h-i=2ﬂ'-@=ﬂ'+2ﬂn,
S,.. 2 2

which corresponds to the condition of first-approximation
compensation for the nonlinear effects of sextupoles
located in these cells. This remarkable property also
applies to higher multipoles in bending magnets and
guadrupoles because each of them has a partner in the
other quarter of the arc at a distance of odd integral = of
radial oscillations (see Fig. 9).
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Figure 9: Half of arc with (Syc:vac)=8:6

Thus, choosing Sy, Kk, and v, We determine the lattice of
the arc and the number of arcs. On the one hand, we are
limited by strict rules for the choice of these parameters,
on the other, the choice is quite wide and we may speak
about a certain class of accelerators with such arcs.

By way of example, let us consider two versions of the
lattice for the PS2 accelerator with an identical number of
arcs and identical transition energy v =i10. In the first
version the arc has the number of superperiods S;c = 8
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Figure 11: Dependence of the B-functions (a, €) in one superperiod and the disperson (b, d) in the 8-superperiods arc
with the horizontal tunev,=6 (a, b) and v4=7 (c, d) and 10 magnets per one arc.



Table 1: TWISS parameters of regular FODO lattice and “resonant” lattices with 8 superperiods per arc

Options(arc length=513.5 m) Yir Bxmax Bymax Dymax

Regular lattice with 22 FODO cells (84 magnets per arc) ~10 39 39 35

Resonant |atti ce with v,=6; v,=6; longer central quadrupole, ~i8+10 60 61 6.2
8 magnets per superperiod

Resonant |attice with v,=6; v,=6; two central quadrupoles; ~i8+10 62 69 6.0
8 magnets per superperiod

Resonant |attice with v,=7; v,=6; longer central quadrupole; ~i8+10 48 62 94
8 magnets per superperiod

Resonant |attice with v,=7; v,=6; two central quadrupoles; ~i8+10 49 71 9.0
8 magnets per superperiod

Resonant |attice with v,=6; v,=6; longer central quadrupole; ~i8+10 71 41 7.9
10 magnets per superperiod

Resonant |attice with v,=7; v,=6; longer central quadrupole; ~i8+10 47 40 145
10 magnets per superperiod

Table2: Magnito-optic eements of regular FODO lattice and “resonant” lattices with 8 superperiods on arc

Onearc: length=513.5m Nmag L mag Nauad | Laquad Naext L sext

Regular with 22 FODO cells (84 magnets per arc) 84 37 44 15 44 0.5

Resonant |atti ce with v,=6; v,=6; longer central quadrupole, 64 4.9 48 | 1523 32 0.5
8 magnets per superperiod

Resonant |attice with v,=6; v,=6; two central quadrupoles; 64 4.9 56 15 32 0.5
8 magnets per superperiod

Resonant |attice with v,=7; v,=6; longer central quadrupole; 64 4.9 48 | 1523 32 0.5
8 magnets per superperiod

Resonant |attice with v,=7; v,=6; two central quadrupoles; 64 4.9 56 15 32 0.5
8 magnets per superperiod

Resonant |atti ce with v,=6; v,=6; longer central quadrupole; 80 3.9 48 | 1523 32 0.5
10 magnets per superperiod

Resonant |attice with v,=7; v,=6; longer central quadrupole; 80 3.9 48 | 1523 32 0.5
10 magnets per superperiod

and the frequency of horizontal oscillation in the arc
vac = 6, in the second version Sy = 8 and v = 7 (see
Fig. 10). Besides, both versions have two options with
8 and 10 magnets per one superperiod (see Fig. 11). In
tables 1 and 2 parameters of the considered structures
are placed. In spite of all structures have identical
properties, it is reasonable to take finally the structure
with the minimal values of B, and Dy as optimum
structure.

For the dispersion in the straight sections to be zero,
the phase advance of radial oscillations should be a
multiple of 2z and the dispersion should begin with the
zero value at the entrance of the arc. Therefore, the
dispersion oscillates with a double frequency: the
superperiod frequency and the arc periodicity. This
leads to an additionad increase in the maximum
dispersion in the arc. Obvioudy the longer arc, the
bigger amplitude of second periodicity. For example, in
the arc with S,: v4.=8:6 the dispersion increases from

6 m for superperiod to 8 m for arc, which is a ~30%
increase, and in the arc with S;¢ vac=87 the
maximum dispersion increases from 6.5 m to 9.5 m
correspondingly, which isa ~45% increase. In the latter
case thearc period islonger and thus the arc periodicity
causes a larger increase in dispersion. Note that in both
cases the arc periodicity of the dispersion function does
not lead to variation in the momentum compaction
factor because integra (1) remains unchanged. The
behavior of the f,-functions also remains unchanged
because the initial zero dispersion values do not affect
them. Since arcs and straight sections are separated in
functions, the betatron oscillation frequencies vy, in the
arcs do not change in any mode of operation and
therefore quadrupoles specially inserted in the straight
sections and providing the desired fraction value of the
betatron frequency of the entire machine are
responsible for the control of the working point
position. However, in the case of retuning of the
momentum compaction factor, the arc edge values of



the B4 -functions change. Therefore, special matching
sections are inserted in the straight sections, which,
with their four quadrupoles, allow matching of the arcs
and straight sections to be retained. As aresult, arcsare
fully independent of straight sections and correction of
the momentum compaction factor does not affect the
values of the B4y-functions set for the straight section’s
facilities. If there are no specia requirements to the
behavior of the f.,-functions in the straight sections,
the straight section lattice is usually mirror symmetrical
about its middle, and therefore all quadrupoles of the
straight sections can be directly used for matching arcs
and draight sections. This considerably simplifies
tuning of the entire accelerator due to minimization of
the number of quadrupole families in the straight
sections.

CONTROL OF MOMENTUM
COMPACTION FACTOR AND ARCS
TUNE

As we know in the “resonant” lattice in order to
achieve the required momentum compaction factor, we
modulate the quadrupole gradients on arcs correlated
with afixed orbit curvature modulation. In practice, we
should know exactly which element controls the
momentum compaction factor and arc tunes. Moreover,
the dement responsible for one function should be
minimally correlated with the element responsible for
another function. Due to the special features of the
“resonant” lattice, this principle can be redized. From
formulas (6) and (7), we can derive that at the mirror
superperiod symmetry, the dispersion and the S

functions are modul ated by factors:

1(RY
D‘ﬁ”“{l‘z[vm] "

0, coskg +1 r, Coskg }

(1_ ksarc / Varc)[l_ (1_ ksarc / Varc)z] 21- ksarc / Varc

— 2
1{ R coskg
ﬁx'y luw|: 2 [Vtotal ] . 1-(1-kS,. /Varc)z ]

(10)
On condition that ratios kS,.>v,., g9,>0 and
r, <0 arefulfilled for the fundamental harmonic k=1,
the maximum dispersion will be at the superperiod
center ¢ =0, and the maximum horizontal /5 -function
beginning &t ¢=-7 and ending a& ¢=7z on the
superperiod.
Figure 12 shows the functional control of all
guadrupoles. In the “resonant” lattice, the central
focusing quadrupole QF2 is placed in the maximum
dispersion giving it the main role in controlling the
fundamental harmonic. Another focusing quadrupole
QF1 is placed in the maximum S, -function, which
makes it effective at contralling the horizontal tune.

Due to FODO features, the S, - functions are very

well separated and two defocusing quadrupoles
independently affect the vertica tune To prove
independent controllability of the momentum
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Figure 12: Functional control scheme of elementsin a
half superperiod

compaction factor on both horizontal and vertica arc
tunes, we performed a numerical ssimulation of such
contral in the lattice with originaly installed maximum
possible negative o =—-0.02(y,, =i7) .

o
0.02
QD1, QD2
QF1, QD ———--
. .
\*\\ QF2 ——

008+ N SR
.20 10 0 10 20
dG/G, %
Figure 13: Momentum compaction factor vs
guadrupol es gradient

Figure 13 shows how the gradient of quadrupoles QF1,
QF2, QD1, QD2 and QD (QD1=QD2) changes the
momentum compaction factor in the vicinity of
working meaning «=-0.02. In the case where
QD1=QD2, there is one family of defocusing
guadrupoles, and both quadrupoles are feed by one
power source.

From these results we can see that the derivatives of
momentum compaction factor with a gradient in the
guadrupoles arein thereation:



o o o o
>> =~ =~ (12)
aGQFz aGQFl aGQDl aGQDz

Thus, the momentum compaction factor can be very
flexibly controlled by the focusing quadrupole QF2
alone. Simultaneoudly, the QF1 gradient is expected to
impact effectively on horizontal tune. Figures 14 and
15 show the numerical simulation of how each family
of quadrupoles changes the horizonta and vertical
tunes for one half-arc in the vicinity of working points
V.., =2%x3.0and v,., =2x3.0.
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Figure 14 Horizontal tune vs quadrupol es gradient
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Figure 15 : Vertical tune vs quadrupol es gradient

From these results, we can see that the derivatives of
horizontal and vertical tunes with a gradient in the
guadrupoles arein thereation:

J Varcx J Varcx J Varcx J Varcx
— > —=>> ——" = ——
dGgry  9Gqr, dGg;  9Gqp, (12)
al/arcy _ al/arcy al/arcy _ al/arcy

>>
aGQDl aGQl)z aGQFl aGQFz

After readjusting the momentum compaction factor

using the QF2 quadrupole family, the required tunes

value v are returned by two-three iteration steps

arcx,y
using another quadrupole family QF1 and QD, which
in turn weakly influence the momentum compaction
factor.
Thus, we have separated internal arc functions:
e momentum compaction factor is controlled by
central focusing quadrupole QF2,

e horizontal tune is controlled by focusing
guadrupole QF1,

e vertical tune is controlled by defocusing
guadrupoles QD1 and QD2 or QD.

al/arcy and aaéarcy have

QD1 QD2
approximately equal values, it is reasonable to use one
family of defocusing quadrupoles, QD, only. This
allows us to control the vertical tune more easily and
more effectively, and does not influence the
controllability of other parameters.

Since derivatives

CHROMATICITY CORRECTION

The chromaticity is created by the quadrupole and
defined as the variation of the betatron tune v, , with

dv
the relative momentum deviation Q;, = d;y , Where

) =£. The special optic elements, the sextupales,
p

are installed into the lattice to correct the chromaticity.
Their integrated contribution over the whole ring
circumference C on the chromaticity is.

v

w2 L Fg (9.0,
_a%_i4ﬂ!&y®)D®)&$¢; (13

Obvioudy, to strengthen the sextupole efficiency, they
have to be alocated in maximum dispersion and with

different S, and B, values to split the chromaticity

correction in the horizontal and vertica planes. With
regard to the last point, the “resonant” lattice based on
the singlet FODO structure is preferred above other
lattices based on doublet or triplet structures. In the
“resonant” lattices, the empty space of magnet-free
cellsis used for the sextupole location (see Fig. 12). In
some projects, for instance in JPARC, the focusing
sextupole isinserted into the splintered central focusing
guadrupole (see Fig. 7). Two families of sextupoles,
two focusing and two defocusing sextupol es, are used.

In order to prove independent controllability of
chromaticity on both focusng and defocusing
sextupoles, we performed a numerica simulation of
such contral in the lattice with initially installed zero
chromaticity ¢&,,=0. Figures 16 and 17 show the

numerical simulation results and how the focusing and
defocusing sextupoles SF and SD change the horizontal
and vertical chromaticity correspondingly. From these
results, we can see that the derivatives of horizontal
and vertical chromaticities with gradient in the
sextupoles can be related as follows:

oG

and (14)
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Figure 16: Horizontal chromaticity vs focusing and
defocusing sextupole gradient
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Figure 17: Vertical chromaticity vs defocusing and
focusing sextupol e gradient

Thus, two sextupole families can control both
horizontal and vertical chromaticities independently
and successfully.

COMPENSATION OF SEXTUPOLE
NONLINEARITY

In the common case, the lattice has nonlinear optics.
Usually, the strongest contribution to the nonlinearity is
made by the chromatic sextupoles. In order to
investigate the nonlinear optics, we use the
Hamiltonian formalism. In the variable “action-angle’,
lyy»¥,, coordinates

X, y17X,

=046 s, 1 =(1+6)—Y o

" 2/3,(9) o 2p,(s) ¢
(15)

the Hamiltonian is presented as:
H(,,5,1,,8,)=v,l, +v I,
(16)

m

1 jk jl2 k/2 H ’
+5 > ER- 1215 expi(18, + md,)

jkl,m

where the coefficients E)* depend on the value and
digtribution of the nonlinear elements, and they have

the periodicity 27 with the new “time” coordinate

0==-5s:

ol -

Elﬂw( = Z P EXPIPE (17)
P

So, the nonlinear part of Hamiltonian is:

1

= > 112 | KI2 gy B
V_Ejg;m;hjk'mp'lxj 1y expi(1 g, + md, - pb)
(18)
with the Fourier coefficients:
1%,
Niarp =Z!E,§nk expipé . (19)

In case two conditions are fulfilled, namey the
harmonic value hy,,, #0 for some of the nonlinear
gements M,,,, and kv, +kyv,=p, where k, =I
and k, =m, we have nonlinear resonance, and on the
contrary, when we wish to exclude the resonance
influence, we should minimize the harmonic amplitude
N - The only condition, which cancels all

coefficients E¥ is the zero value of Piwmp =0 for all

j,.K,I,m. In particular, where the chromaticity correction
on arcs with S;. superperiods is performed, the
sextupoles must be placed with the phase advances
Uy, p, per superperiod, when the harmonic is
N =0 for al above-mentioned combinations of

j,l,k,min (19), and the total multipole of the third order
iscanceled:

N
M;otal — Z S)(yyﬁ)l(/Zﬁ;n/Z eXp|n(|/ux + rnuy) =0, (20)

n=0

where S, ae the sextupoles gradient. In the
“resonant” lattice, the superperiod number S, iseven

and the arc tune v, is odd, then the phase advance
between smilar sextupoles of n-th and

[n+£j—th
2

Sic 2zv, . Sue =av,) (see Fig. 9). In the

SR I

first order of the perturbation theory, the sextupole
excites four resonances {l,m}={1,0,30;1+2}. Taking
into account that sextupole takesthe odd integer |, we
have the conditions required to compensate for each
sextupol €'s nonlinear action with another one.

superperiods equals

The same can be inferred for the sextupole components
in the magnets, since each magnet has its twin located



on zv,l phase advance, where the nonlinear kick is

compensated.

In case of essentia chromaticity contribution from the
straight section a method of the second order non-
linearity compensation has to be foreseen as well.
Solving the nonlinear equation and deriving the
Hamiltonian (16) in the first order of the perturbation
theory, the value hy,,, istaken asthe small parameter,

and al non-resonant terms are omitted. Thus, in the
first order of the perturbation theory, the sextupoles can
be canceled. However, in the second order, the
nonlinear perturbation already containsthe higher order
of Ny, Which gives nonlinear tune shifts, such as

octupoles [10]. In principle, the sextupole nonlinear
tune cannot be controlled after the sextupole location
has been fixed. Therefore, the sign of total chromaticity
is controlled by the octupales, which are located in the
multi-pole correctors. Thus, after chromaticity
correction, the nonlinear tune shift is measured and
then using the correcting octupole, we adjust the
required sign and value of the nonlinear tune shift, as
described in [10].
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Figure 18: PS2 dynamic aperture after chromaticity
correction at Ap/p=1%

After al corrections have been made, we have done the
tracking for the maximum momentum spread beam
Ap/ p=1%. Figure 18 shows the results of dynamic
aperture calculations after chromaticity correction. For
horizontal plane it is ~600 mm-mrad and for vertical
plane it has approximately the same meaning ~500
mm-mrad.

CONCLUSION

The PS2 imaginary gamma-transition lattice was
developed with features:

o ability to achieve the negative momentum
compaction factor using the resonantly correlated
curvature and gradient modulations;

e gamma transition variation in a wide region from
vr=Vx t0 yy=ivx With quadrupole strength variation
only;

e integer odd 2r phase advance per arc with even
number of superperiod and dispersion-free straight
section;

¢ independent optics parameters of arcs and straight
sections,

o two families of focusing and one of defocusing
guadrupoles;

o separated adjustment of gamma transition,
horizontal and vertical tunes;

e convenient chromaticity correction method using
sextupoles;

o first-order  sdf-compensating  scheme  of
multipoles and as consequence low sensitivity to
multipole errors and a large dynamic aperture
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