

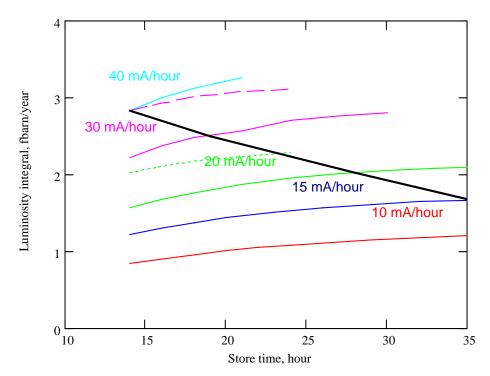
Leveling with β^*

Valeri Lebedev

<u>Contents</u>

- Tevatron experience
- Luminosity Leveling in Tevatron
- Luminosity leveling for the SLHC
- Conclusions

Francesco Ruggiero Memorial Symposium: Mini-Workshop on Upgrades of LHC Injector Complex & FAIR October 1-6, 2007


Tevatron Experience

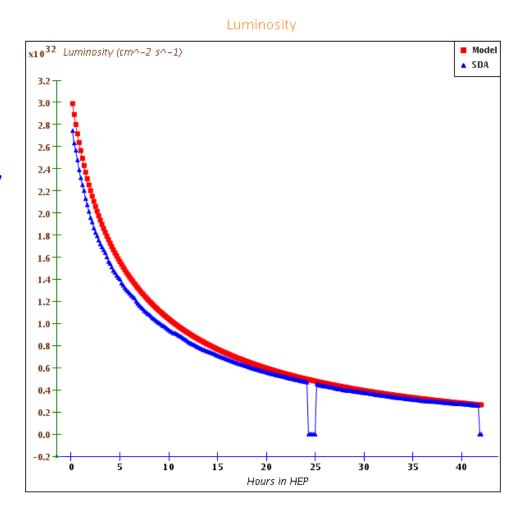
- Three projects which were considered as a high priority at the beginning of Run II were discarded in the course of upgrades
 - Recycling of antiprotons
 - Transition from 36×36 to 103×103 bunches
 - Luminosity leveling
- The last two were aimed at reduction of the peak luminosity per collision
- The first one (Antiproton recycling) was indirectly aimed to the same goal

<u> Tevatron Experience (continue)</u>

Antiproton recycling

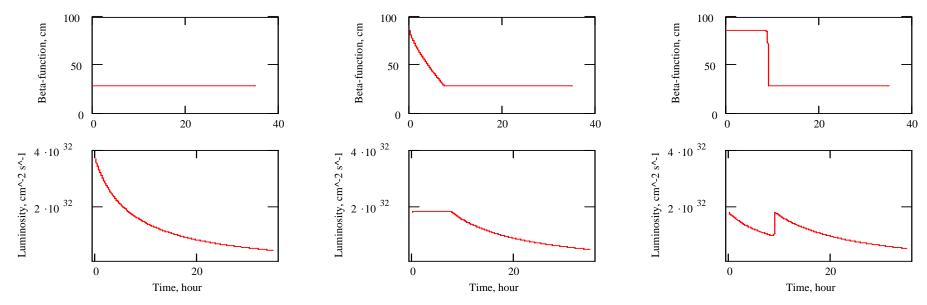
- In the case of long stores there is small number of particles left at the store end and they have large emittances. That means there is not much to recycle.
- The expected gain was only 10% versus ~(30-50)% estimated earlier
 - Separate optimization with and without recycling reduced the gain of recycling
 - If one takes into account ~1
 hour time for recycling the gain basically disappears
- The recycling project was stopped in 2003
- As result we are running 25 hour stores instead of 12 hour ones
 - That makes large variation of luminosity

Solid lines - no recycling Dashed lines - with recycling Solid black line N_{pbar}=1.35·10¹¹ /bunch *FNAL AAC, February 4-6, 2003


<u> Tevatron Experience (continue)</u>

Transition from 36×36 to 103×103 bunches

- The use of 103 bunches would require 3 times larger number of protons in Tevatron. It would compromise the beam stability ⇒ transverse damper ⇒ emittance growth due to damper
- The project was stopped in 2003


Luminosity leveling

- Project was never discarded but never got sufficiently high priority to be considered seriously
- Typical luminosity variation during store is 5-6 times
- Any luminosity leveling would affect the luminosity integral
- CDF and DO can operate at present maximum luminosity
 - Maximum number of collisions per crossing ~10 (σ=60 mb, L=2.9·10³²)

<u>Luminosity Leveling in Tevatron</u>

- Any luminosity leveling results in a reduced luminosity integral
- (1) Smooth (multi-step) beta-function change during the store is close to impossible to implement in operations
- (2) Single step beta-function change looks promising
 - Significant time for commissioning
 - More complicated operations larger probability to lose the store. ~1-5 min stop for data acquisition during the beta-function change
- (3) Reduced store duration
 - Easy to do. Does not require any praparations

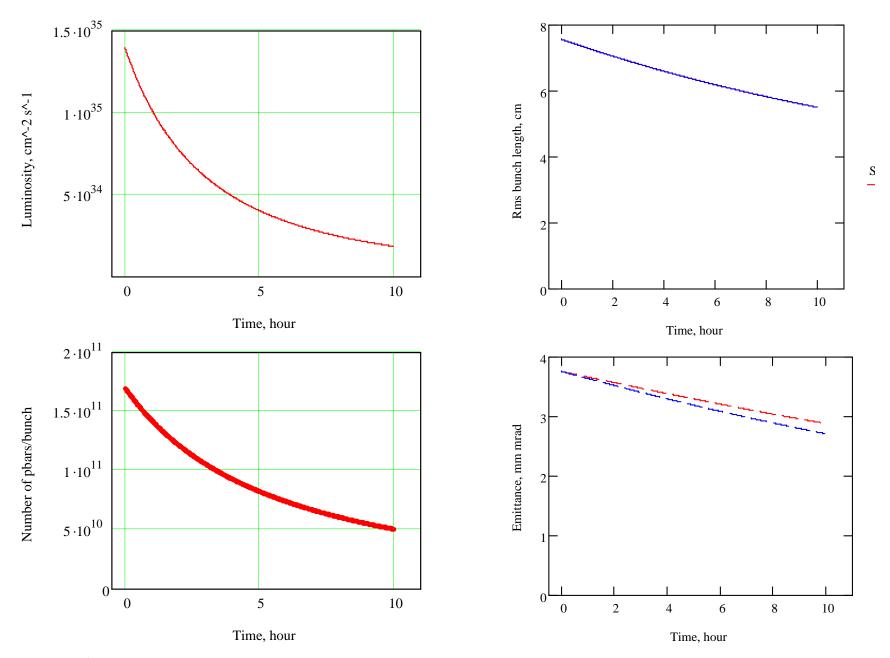
Luminosity leveling (continue)

	Maximum Smooth β - 1 step β -		Reduced store time		
	Luminosity	function	function	at present	at new WP
	scenario	leveling	leveling	WP	+ large Np
L _{peak} , 10 ³²	3.68	58 1.8			
Store time, h	35			15.7	12.3
∫Ldt, fb⁻¹/year	2.35	2.19	2.03	1.67	1.71
		-6.5%	-13.5%	-29%	-27%
Np	2.70·10 ¹¹			2.50·10 ¹¹	3.20·10 ¹¹ ?
Npbar	1.25·10 ¹¹			5.58·10 ¹⁰	4.37·10 ¹⁰
ϵ_{p} , mm mrad	18			18	20
Epbar, mm mrad	15			10	8

We assume:

- Average pbar production rate in Recycler 16.10¹⁰ /hour
- Efficiency of Recycler to HEP 0.8
- 2 hour shot setup
- ♦ 130 hour store time per week
- 10 month operation

For present and near future staking rates the reduced store time can be used for leveling with very little penalty


Is Luminosity Leveling going to happen in Tevatron?

- When in collisions Tevatron is extremely sensitive to any optics change
- Therefore the only scheme which was seriously discussed is the single step beta-function change
- It requires ~5 min to perform the following steps
 - Beam separation in IPs
 - Optics and helix adjustments
 - Bringing beams back to collisions
 - Rescraping
- Implementation of such a scheme would require considerable study time and would result in 10-20% loss of the luminosity integral
- Presently both detector collaborations can operate on the highest luminosities we managed to deliver
 - It is much easier to reduce the store time and, consequently, the number of pbars and the peak luminosity
- It looks like that the luminosity leveling will never be implemented in the course of Tevatron Run II

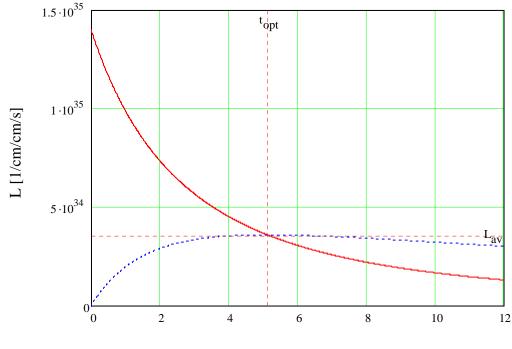
Leveling with $\beta^*\!,$ Valeri Lebedev, October 1-6, 2007, CERN

<u>Luminosity leveling for the SLHC</u>

Luminosity evolution is almost entirely set by particle loss in IP

Leveling with β^* , Valeri Lebedev, October 1-6, 2007, CERN

Luminosity evolution without leveling


Neglecting other mechanisms one can build a simple model for the luminosity evolution

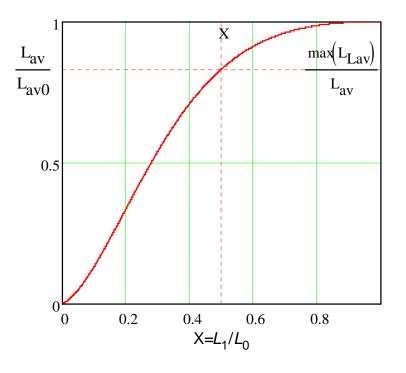
$$L(t) = \frac{L_0}{(1 + t / \tau)^2}, \quad \tau = \frac{N_0}{n_{IP} L_0 \sigma}$$

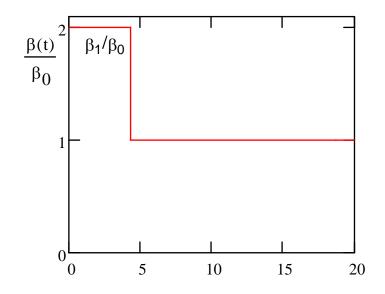
 $\sigma \approx$ 90 mb

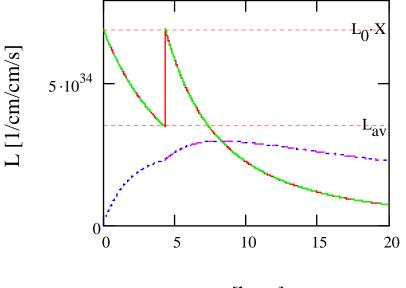
For Tevatron energy of 1 TeV $\sigma_{total} \approx 69 \text{ mb}, \sigma_{inelastic} \approx 60 \text{ mb},$ $\sigma_{elastic} \approx 15 \text{ mb}$ - about half stays in the aperture after an elastic scattering

$$L_{aver} = \frac{L_0 \tau}{\left(\sqrt{\tau} + \sqrt{T_s}\right)^2} \quad \text{for} \quad t = T_{opt} \equiv \sqrt{T_s \tau}$$

t [hout]


 T_s the is the turn around time, ~5 hour At optimum, $L_{aver} = L_{min}$, and the peak luminosity exceeds the average one by $\frac{L_0}{L_{aver}} = \left(1 + \sqrt{\frac{T_s}{\tau}}\right)^2$. For ES scenario: $\tau \sim 5.6$ hour, $L_0/L_{aver} \sim 3.9$.


Luminosity evolution with one step β^* leveling


Luminosity and the IP β-function are directly related

$$X = \frac{L_1}{L_0} = \frac{\beta_0}{\beta_1}$$

Two times reduction of the peak luminosity results in only 17% average luminosity reduction (relative to the case with no leveling

t [hour]

Leveling with β^* , Valeri Lebedev, October 1-6, 2007, CERN

Luminosity evolution with one step β^* leveling (continue)

- Analytical optimization yields
 - Time between the store beginning and the beta-function change

$$T_1 = \frac{\tau}{X} \left(\sqrt{\frac{1}{X}} - 1 \right)$$

• Time between the beta-function change and the store end

$$T_2 = \tau \left(1 - \sqrt{\frac{1}{X}} + \sqrt{\left(1 - \sqrt{\frac{1}{X}}\right)\left(1 - \frac{1}{X}\right) + \frac{T_s}{\tau}} \right)$$

• Average luminosity as function of $X=L_{init}/L_0 = L_1/L_0$

$$L_{aver} = L_0 \frac{1 + \sqrt{X} (T_2 / \tau - 1)}{1 + \sqrt{X} T_2 / \tau} \frac{\tau}{T_s + T_1 + T_2}$$

<u>Conclusions</u>

- **Leveling with** β^* was never tried at Tevatron
 - Nevertheless the accumulated experience supports one or few steps leveling. Time required for beam manipulations is small relative to the store time and will not affect the average luminosity
- Even the single step β^* leveling allows one to reduce the peak luminosity by ~2 times with only ~15-20% loss in the average luminosity
- E Tevatron experience does not support continues (smooth) β^* change
 - The main limitation is the required commissioning time