Analytic Approximations of Tune Shifts and Beam Coupling mipedances for the EHC

Stefanla Petracca
 University of Sannio at Benevento and INFN

Francesco Ruggiero Memorial Symposium CERN, October 32007.

Outlook

- Laslett coefficients for Betatron Normal Modes

Square vs Circular Pipes
A Toy Twin-Liner Model
Real-World Gometries: MoMs \& Random Paths

- Beam Coupling Impedances from Reciprocity Theorem

Rounded corners and more

- Leontòvich Boundary Conditions and Beyond

Lossy Walls, Coated Walls, Pumping Holes, etc.
...What's it all for ?

Francesco Ruggiero Memorial Symposium CERN, October 32007

Betatron Oscillations

Forces acting on beam

$$
\left.\vec{f}=\vec{f}^{(s p . c h .)}+\vec{f}^{(i m .)}+\vec{f}^{(g . f .)}\right)
$$

Nominal beam equilibrium position

$$
\left.\vec{f}^{(g . f .)}\right|_{\vec{\rho}=\vec{\rho}_{e q} .}+\left.\vec{f}^{(i m .)}\right|_{\vec{\rho}=\vec{\rho}_{b}=\vec{\rho}_{e q .}}=0
$$

Linearized forces:

$$
\left\{\begin{array}{l}
\vec{f}=\left(\vec{\rho}-\vec{\rho}_{e q .}\right) \cdot \nabla_{\vec{\rho}}\left[\vec{f}^{(i m .)}+\vec{f}^{(s p \cdot c h .)}+\vec{f}^{(g \cdot f .)}\right] \vec{\rho}=\vec{\rho}_{b}=\vec{\rho}_{e q .} \\
\vec{f}=\left(\vec{\rho}-\vec{\rho}_{e q .}\right) \cdot\left[\left(\nabla_{\vec{\rho}}+\nabla_{\vec{\rho}_{b}}\right) \vec{f}^{(i m \cdot)}+\nabla_{\vec{\rho}} f^{(g \cdot f \cdot)}\right] \vec{\rho}=\vec{\rho}_{b}=\vec{\rho}_{e q} .
\end{array}\right.
$$

Incoherent regime $\vec{\rho}_{b}=\vec{\rho}_{e q .}, \vec{\rho} \neq \vec{\rho}_{e q}$. (single particle dyn.)

Coherent regime $\vec{\rho}=\vec{\rho}_{b} \neq \vec{\rho}_{e q}$. (whole beam dyn.)

Nominal tune, $\mathrm{H}-\mathrm{V}$ simmetry no $\mathrm{H}-\mathrm{V}$ coupling under guiding field (can be relaxed)

$$
\begin{aligned}
& \frac{1}{m \gamma}\left(\nabla_{\vec{\rho}} \vec{f}(g . f)\right)_{\vec{\rho}=\vec{\rho}_{e q .} .} \equiv \Omega_{c}^{2} \nu_{o}^{2} \overline{\bar{I}}, \quad \Omega_{c}=\frac{\beta c}{R} \\
& \quad \text { nominal orbit radius }
\end{aligned}
$$

Francesco Ruggiero Memorial Symposium CERN, October 32007

Betatron Oscillations, contd.

Betatron oscillations ($\delta=\vec{\rho}-\vec{\rho}_{e q .}, \tau=s / c$)

$$
\frac{d^{2} \vec{\delta}}{d \tau^{2}}+\Omega_{c}^{2} \nu_{0}^{2} \overline{\bar{U}} \cdot \vec{\delta}=0
$$

$$
\overline{\bar{\epsilon}}=\frac{L^{2}}{4 \Lambda} q^{-1}\left\{\begin{array}{l}
\nabla_{\vec{\rho}}\left[\vec{f}^{\text {im. })}+\vec{f}^{\text {sp.ch. })}\right]_{\vec{\rho}=\vec{\rho}_{b}=\vec{\rho}_{e q} .} \text { incoherent } \\
\left.\left(\nabla_{\vec{\rho}}+\nabla_{\vec{\rho}_{b}}\right) \vec{f}^{\text {(im. })}\right|_{\vec{\rho}=\vec{\rho}_{b}=\vec{\rho}_{e q} .} \quad \text { coherent }
\end{array}\right.
$$

Normal-mode Lasletts:

$$
\epsilon_{1,2}=\frac{\epsilon_{11}+\epsilon_{22}}{2} \pm\left[\left(\frac{\epsilon_{11}-\epsilon_{22}}{2}\right)^{2}+\epsilon_{12} \epsilon_{21}\right]^{1 / 2} \quad \begin{aligned}
& \text { (for the two incoherent normal modes } \\
& \text { one has always } \epsilon_{1}=-\epsilon_{2} \text {). }
\end{aligned}
$$

Square vs. Circular Liner

Francesco Ruggiero Memorial Symposium CERN, October 32007

Twin-Beam Toy Model

Several possible regimes :

$$
\begin{aligned}
& \text { Incoherent-incoherent : } \vec{r}_{b}^{(i)}=\vec{r}_{e q}^{(i)}, \vec{r}^{(i)} \neq \vec{r}_{\text {eq }}^{(i)}, i=1,2 \\
& \text { Coherent-coherent }: \vec{r}^{(i)}=\vec{r}_{b}^{(i)} \neq \vec{r}_{e q}^{(i)}, i=1,2 \\
& \text { Mixed : } \vec{r}_{b}^{(1)}=\vec{r}_{e q .}^{(i)}, \vec{r}^{(i)} \neq \vec{r}_{e q .}^{(i)}, \vec{r}^{(j)}=\vec{r}_{b}^{(j)} \neq \vec{r}_{e q .}^{(j)}
\end{aligned}
$$

Different boundary conditions to be imposed
on the electric (ϕ) and magnetic $\left(A_{z}\right)$ potential static (=) and dynamic (\sim) parts :

$$
\left.\phi\right|_{\text {pipe wall }}=0,\left.\partial_{n} A_{=}\right|_{r=R^{-}(\text {yoke })}=\left.\mu_{r}^{-1} \partial_{n} A_{=}\right|_{r=R^{+}(\text {yoke })}
$$

$\left\{\begin{array}{l}\left.A_{\sim}\right|_{\text {pipe wall }}=0, \text { high-frequency, non penetrating modes (skin depth } \ll \text { pipe wall thickness) } \\ \left.\partial_{n} A_{\sim}\right|_{r=R^{-}(\text {yoke })}=\left.\mu_{r}^{-1} \partial_{n} A_{\sim}\right|_{r=R^{+}(\text {yoke })} \text {, low-frequency, penetrating modes (skin depth >> pipe wall thickness) }\end{array}\right.$
...yielding different coherent and mixed dynamics.
[S. Petracca, Part. Accel., 62 (1999) 241]
Francesco Ruggiero Memorial Symposium CERN, October 32007

Twin-Beam Toy Model, contd.

The Al-frame holding the beam pipes in the LHC design will prevent the dynamic magnetic field from coupling the beams, even at the lowest frequency associated with collective beam oscillations. As a result, the two beams are dynamically uncoupled. Neglecting space-charge effects, all regimes (incoherent, coherent, \& mixed) merge together in the limit as $\beta \rightarrow 1$, yielding (both pipes):

$$
\begin{aligned}
\left|\epsilon_{1,2}\right|= \pm & \frac{1}{2} \left\lvert\,-\left(\frac{\bar{z}_{\mathrm{eq}}^{*}-\bar{z}_{\mathrm{cl}}^{*}}{\left|\bar{z}_{\mathrm{eq}}-\bar{z}_{\mathrm{cl}}\right|^{2}-1}\right)^{2}-\beta^{2} \frac{1}{\left(\bar{z}_{\mathrm{eq} .1}-\bar{z}_{\mathrm{eq} .2}\right)^{2}}\right. \\
& \left.+\beta^{2} \frac{\mu_{\mathrm{r}}-1}{\mu_{\mathrm{r}}+1}\left[\left(\frac{\bar{z}_{\mathrm{eq} .1}^{*}}{\left|\bar{z}_{\mathrm{eq} .1}\right|^{2}-\bar{R}^{2}}\right)^{2}-\frac{\bar{z}_{\mathrm{eq} .1} \bar{z}_{\mathrm{eq} .2}^{*}}{\left(\left|\bar{z}_{\mathrm{eq} .1} \bar{z}_{\mathrm{eq} .2}^{*}\right|^{2}-\bar{R}^{2}\right)^{2}}\right] \right\rvert\,
\end{aligned}
$$

Twin-Beam Toy Model, contd.

Francesco Ruggiero Memorial Symposium CERN, October 32007

Twin-Beam Toy Model - One Beam

Francesco Ruggiero Memorial Symposium CERN, October 32007

Real-World Geometries: Numerics

MoM : Rounded Corners \& Stadium Shape Variations

Based on efficient representation of the (exact) Green's function for rectangular and circular domains, allowing to shrink the unknown charge density support (and related number of unknown charge expansion coeffs) to a min.
[S. Petracca, et al. Part. Accel. $\underline{63}$ (1999) 37]

Random Paths

Computes the (complex) potential only on a circle, using stochastic calculus, and then uses Cauchy integral formula for computing the Lasletts without the need of approximating derivatives with finite differences.
[S. Petracca, F. Ruggiero, et al., Proc. PAC-97, 1753]

Francesco Ruggiero Memorial Symposium CERN, October 32007

MoMs : Lasletts vs. Round-Corner Radius

(fixed off-axis distance; several angular position)

Francesco Ruggiero Memorial Symposium CERN, October 32007

MoMs : Lasletts vs. Round-Corner Radius

(fixed off-axis distance; several angular position)

Francesco Ruggiero Memorial Symposium CERN, October 32007

MoMs : Hard-Cut Circle

$(a=1, b=0.7,0.2 \leq x \leq 0.8,0.2 \leq y \leq 0.5)$

Francesco Ruggiero Memorial Symposium CERN, October 32007

Random Paths : Cold Bore HOM

Scaled cutoff wavelength of 1st HOM in the coax guide between the beam screen and the cold bore vs. (scaled) corner radius for several beam screen (scaled) sizes

Francesco Ruggiero Memorial Symposium CERN, October 32007

Outlook

- Laslett coefficients for Betatron Normal Modes

Square vs Circular Pipes
A Toy Twin-Liner Model
Real-World Gometries: MoMs \& Random Paths

- Beam Coupling Impedances from Reciprocity Theorem Rounded corners and more
- Leontòvich Boundary Conditions and Beyond

Lossy Walls, Coated Walls, Pumping Holes, etc.
...What's it all for?

Francesco Ruggiero Memorial Symposium CERN, October 32007

LHC Pipe Progress Design (1995)

Rounded corners
(manufacturing limitations)
Stainless steel (lossy) pipe (pure Cu would not sustain the quenching forces due to magnetic field penetration (\& parasitic currents) in case of failure of the cryogenics)

Copper-coated surface
(uncoated SS would give excessive parasitic losses; coating restricted to flat faces, where fields and loss would be largest)

Pumping holes

(removal of gas desorbed tue to synchrotron radiation)

Francesco Ruggiero Memorial Symposium CERN, October 32007

Beam Coupling Impedances from Reciprocity Theorem

$$
\begin{aligned}
& \int_{\partial S}\left(\Phi \frac{\partial \Phi_{0}^{*}}{\partial n}-\Phi_{0}^{*} \frac{\partial \Phi}{\partial n}\right) d \ell=\int_{S}\left(\Phi \nabla_{t}^{2} \Phi_{0}^{*}-\Phi^{*} \nabla_{t}^{2} \Phi\right) d S \quad \text { Reciprocity... } \\
& \nabla_{t}^{2} \Phi-k^{2}\left(1-\beta_{0}^{2}\right) \Phi=-\frac{Q}{\epsilon_{0}} \delta\left(\vec{r}-\vec{r}_{1}\right) \quad \nabla_{t}^{2} \Phi_{0}^{*}-k^{2}\left(1-\beta_{0}^{2}\right) \Phi_{0}^{*}=-\frac{Q}{\epsilon_{0}} \delta\left(\vec{r}-\vec{r}_{0}\right) \\
& \text { Potential - perturbed pipe (unknown) Potential - unperturbed pipe (known) } \\
& \int_{\partial S}\left(\Phi \frac{\partial \Phi_{0}^{*}}{\partial n}-\Phi_{0}^{*} \frac{\partial \Phi}{\partial n}\right) d \ell=\frac{Q}{\epsilon_{0}}\left[\Phi_{0}^{*}\left(\vec{r}_{1}, \vec{r}_{0}\right)-\Phi\left(\vec{r}_{0}, \vec{r}_{1}\right)\right]
\end{aligned}
$$

Francesco Ruggiero Memorial Symposium CERN, October 32007

Beam Coupling Impedances from Reciprocity Theorem, contd.

$$
\begin{aligned}
& \left.\frac{\partial \Phi}{\partial n}\right|_{\partial S}=\nabla_{t} \Phi \cdot \hat{u}_{n}=-E_{n}^{(i r r .)} \\
& \left.\frac{\partial \Phi}{\partial n}\right|_{\partial S}=\nabla_{t} \Phi_{0}^{*} \cdot \hat{u}_{n}=-E_{0 n}^{*(i r r .)} \\
& \Phi_{0}^{*}=-\frac{E_{0 z}^{*}}{j k\left(1-\beta_{0}^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\left.\Phi\right|_{\partial S} & =\frac{\left.E_{z}\right|_{\partial S_{-}}}{j k\left(1-\beta_{0}^{2}\right)} \frac{\left.Z_{w-a l l} \underline{H}_{c}\right|_{\partial S}}{j k\left(1-\beta_{0}^{2}\right)}= \\
& =-\frac{Y_{0} Z_{w a l l}}{j k\left(1-\beta_{0}^{2}\right)}\left(\beta_{0} E_{n}^{(i r r .)}+\beta_{0}^{-1} E_{n}^{(\text {sol. })}\right)_{\partial S}
\end{aligned}
$$

Beam Coupling Impedances from Reciprocity Theorem, contd.

$Z_{\|}-Z_{0, \|}=\frac{\epsilon_{0}}{\beta_{0} c Q^{2}}\left\{\oint_{\partial S}\left[\beta_{0} E_{n}^{(i r r)}(\vec{r}, 0)+\frac{1}{\beta_{0}} E_{n}^{(s o l .)}(\vec{r}, 0)\right] \frac{Z_{W}}{Z_{0}} E_{0 n}^{(i r r .) *}(\vec{r}, 0) d \ell\right.$

constitutive wall perturbation
geometric wall perturbation ($E_{0 z}=0$ on ∂S_{0})

$$
\overline{\bar{Z}}_{\perp}(\omega)-\overline{\bar{Z}}_{0, \perp}(\omega)=\frac{\epsilon_{0}}{\beta_{0} c Q^{2} k_{0}}\left\{\oint_{0 S} \frac{Z_{\omega}}{Z_{0}}: \nabla_{\vec{r}_{0}} E_{0 n}^{(i r r) *}\left(\vec{r}, \vec{r}_{0}\right) \otimes \beta_{0} E_{n}^{(i r r)}\left(\vec{r}, \vec{r}_{1}\right)+\beta_{0}^{1} E_{n}^{(s o l .)}\left(\vec{r}, \vec{r}_{1}\right)\right] d \ell
$$

$$
\left.\nabla_{\vec{r}_{0}} E_{0_{2}}^{*}\left(\vec{r}, \vec{r}_{0}\right) \otimes \nabla_{\vec{r}_{1}} E_{n}^{(i r r .)}\left(\vec{r}, \vec{r}_{1}\right) d \ell\right\}
$$

$$
\int_{\vec{r}_{1}=\vec{r}_{0}=0}
$$

[S. Petracca, Part. Accel., 50 (1995) 211.]
Francesco Ruggiero Memorial Symposium CERN, October 32007

Example: Rounded Square Liner

Francesco Ruggiero Memorial Symposium CERN, October 32007

Outlook

- Laslett coefficients for Betatron Normal Modes

Square vs Circular Pipes
A Toy Twin-Liner Model
Real-World Gometries: MoMs \& Random Paths

- Beam Coupling Impedances from Reciprocity Theorem

Rounded corners and more

- Leontòvich Boundary Conditions and Beyond

Lossy Walls, Coated Walls, Pumping Holes, etc.
What's it all for ?

Francesco Ruggiero Memorial Symposium CERN, October 32007

Leontóvich B.C. and Beyond

$$
\left|\left(\overline{\bar{I}}-\hat{u}_{n} \hat{u}_{n}\right) \cdot \vec{E}-Z_{\text {wall }} \hat{u}_{n} \times \vec{H}\right|_{\partial V}=0
$$

Originally formulated for a planar surface bounding some highly reflecting transversely homogeneous lossy half-space...
...but in fact much more versatile than this. Can be applied, e.g., to:
-lossy stratified media (e.g., by repeated use of the TL impedance transport formula)

$$
Z_{i n}=Z_{c} \frac{Z_{\ell}+j Z_{c} \tanh (j k \ell)}{Z_{c}+j Z_{\ell} \tanh (j k \ell)}
$$

-curved surfaces, provided e.g., $n \gg 1, \quad \operatorname{Im}(n) k R \gg 1$
-inhomogeneous media, since

$$
\left|\left(\overline{\bar{I}}-\hat{u}_{n} \hat{u}_{n}\right) \cdot \vec{E}-Z_{\text {wall }} \hat{u}_{n} \times \vec{H}\right|_{\partial}=O\left(\frac{1}{k Z_{0}} \frac{\partial Z_{\text {wall }}}{\partial n}\right)+O\left(\left.\frac{1}{k Z_{0}} \right\rvert\, \nabla_{t} Z_{\text {wall }}\right)^{2}
$$

[T. Senior, J. Volakis, Approximate Boundary Conditions in EMtics, IEE Press, 1995] [L.N. Trefethen, L. Halpern, Math. Comput. 47 (1986) 421]

Francesco Ruggiero Memorial Symposium CERN, October 32007

Leontòvich B.C. and Beyond : Perforated Walls

By solving a canonical b.v.p. we shew that perforated walls can be modeled using

$$
Z_{w}=-j k_{0} Z_{0} n_{\sigma}\left(\alpha_{m}+\alpha_{\epsilon}\right), n_{\sigma}=\text { surface density of holes }
$$

Reproduces Kurennoy's result for $Z_{\|}$[S. Kurennoy, Part Accel. 50, 167, 1995], when used in our perturbative formula for $Z_{\| \mid}$).

Axially aligned holes in a pipe surrounded by lossy co-axial shield (LHC cold bore)
$\alpha_{e, m}=\alpha_{e, m}^{(i)}+F \alpha_{e, m}^{(e)}$
external hole polarizabilities

reproduces Gluckstern's formula (circular pipe) [R. Gluckstern, J. Diamond, IEEE Trans. MTT-39, 274, 1991] when used in our perturbational formula for $Z_{\|}$)
[S. Petracca, Phys. Rev. E60, 6041, 1999]

Leontòvich B.C. and Beyond : Perforated Walls, contd.

Hole polarizabilities available for a variety of hole-shapes see [F. de Meulenaere, J. Van Bladel, IEEE Trans., AP-25 (1977)198; also R. de Smedt, J. van Bladel, IEEE Trans., AP-28 (1980) 703]

Corrections for hole - hole couplings also worked out [S. Petracca, Phys. Rev. E60 (1999) 6030] in the quasistatic approximation [R.E. Collin, Field Theory of Guided Waves, IEEE-McGraw-Hill, 1998]

Also, see [Van Bladel, Radio Sci. 14, 319, 1979] for corrections to Bethe's formula for polarizabilities beyond the underlying quasi-static ($k D \ll 1$) assumption (very short bunches)

Francesco Ruggiero Memorial Symposium CERN, October 32007

Example: LHC Parasitic Loss Budget

$$
\begin{aligned}
& P_{\mathrm{Cu}}^{(\text {holes })}=N_{b} \nu_{r} \frac{Q^{2} c Z_{0}}{8 \pi^{3} a^{2}} W_{\mathrm{Cu}}^{(\text {holes })}\left(\frac{\sigma_{z}}{a}\right) G_{\mathrm{Cu}}\left(\frac{d}{a}\right) \\
& W^{\substack{\text { (ohmic } \\
\text { holes) }}}\left(\frac{\sigma_{z}}{a}\right)=2 \int_{0}^{+\infty} e^{-\left(\sigma_{z}^{2} / a^{2}\right)\left(y^{2} / \beta_{0}^{2}\right)} \operatorname{Re}\left[Y_{0} Z_{\text {wall }}^{\substack{\text { (ohmics, }}}\left(\frac{y c}{a}\right)\right] d y \\
& Z_{w}^{\text {(holes) }}=-j k_{0} Z_{0} n_{\sigma}\left(\alpha_{m}+\alpha_{\epsilon}\right), \quad n_{\sigma}=\frac{N_{\lambda}}{4 a}\left(\frac{d}{a}\right)^{-1}
\end{aligned}
$$

Francesco Ruggiero Memorial Symposium CERN, October 32007

Example: Parasitic Loss Budget, contd.

Stainless-steel resistivity ρ_{ss}	$5 \times 10^{-7} \Omega \mathrm{~m}$
Copper plating resistivity ρ_{Cu}	$5.5 \times 10^{-10} \Omega \mathrm{~m}$
Number of particles per bunch	10^{11}
Number of bunches N_{b}	2835
Revolution frequency ν_{r}	11.245 kHz
Hole radius r_{0}	0.75 mm
Wall thickness	0.75 mm
Liner diameter a	3.48 cm
Bunch length σ_{z}	7.5 cm

Francesco Ruggiero Memorial Symposium CERN, October 32007

Example: Parasitic Loss Budget, contd.

Stainless-steel resistivity ρ_{ss}	$5 \times 10^{-7} \Omega \mathrm{~m}$
Copper plating resistivity ρ_{Cu}	$5.5 \times 10^{-10} \Omega \mathrm{~m}$
Number of particles per bunch	10^{11}
Number of bunches N_{b}	2835
Revolution frequency ν_{r}	11.245 kHz
Hole radius r_{0}	0.75 mm
Wall thickness	0.75 mm
Liner diameter a	3.48 cm
Bunch length σ_{z}	7.5 cm

	$d / a=0.5$	$d / a=0.7$
P_{Cu}	$54 \mathrm{~mW} / \mathrm{m}$	$63 \mathrm{~mW} / \mathrm{m}$
P_{ss}	$326 \mathrm{~mW} / \mathrm{m}$	$72 \mathrm{~mW} / \mathrm{m}$
$P_{\mathrm{Cu}}^{\text {(holes) }}$	$30 \mathrm{~mW} / \mathrm{m}$	$19 \mathrm{~mW} / \mathrm{m}$
$P_{\text {total }}$	$410 \mathrm{~mW} / \mathrm{m}$	$154 \mathrm{~mW} / \mathrm{m}$

in good agreement with measurements
(Caspers, Morvillo and Ruggiero)
Francesco Ruggiero Memorial Symposium CERN, October 32007

e~ 10
"Beauty is truth, truth beauty," that is all Ye know on earth, and all ye need to know. [John Keats, 1795-1821]

Thanks, Francesco.

